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Abstract

This paper modifies Gelman and King’s (1990) study of incumbency
advantage in the U.S. House of Representatives to study incumbency ad-
vantage in the U.S. Senate. After controlling for state-specific factors,
incumbency advantage remains positive and significant, averaging 3.0%
from 1912 to 1992, with a 95% confidence interval of (2.1%, 4.0%).



1 Introduction

While other scholars have studied incumbency advantage in elections to the U.S.
House of Representatives, incumbency advantage in the U.S. Senate remains un-
explored. This paper modifies Gelman and King’s (1990) study of incumbency
advantage in the House to study incumbency advantage in the Senate. After
controlling for state-specific factors (such as the Democratic candidate’s propor-
tion of the vote in the previous election, six years prior, and the party affiliation
of the other senator), incumbency advantage in senate elections averages 3.0%,
with a 95% confidence interval from 2.1% to 4.0%.

2 Problems Applying Gelman and King’s Model
to Senate Elections

Gelman and King propose the following model for estimating incumbency ad-
vantage for House elections in a given congressional district:

E(ν2) = β0 + β1ν1 + β2P1 + ψI2. (1)

They define νt as the proportion that the Democratic candidate receives in
election t = (1, 2). Pt is the party of the winner in election 1.1 A dummy
variable I2 is -1 for a Republican incumbent, 0 for an open seat, and 1 for
a Democratic incumbent. In a manner consistent with the other literature on
incumbency advantage, Gelman and King do not consider uncontested elections.

Applying this model to Senate elections is problematic because the Senate
is a qualitatively different institution than the House. The framers of the Con-
stitution intended that the Senate act as a stabilizing force against the populist
House. For example, until ratification of the 17th Amendment in 1913, senators
were selected by state legislatures rather than by popular vote. Senators serve
six year terms and are divided into three classes, with only one class standing for
election in any given congressional election year. Unlike congressional districts,
states (the geographic unit of Senate representation) are not subject to either re-
districting or reapportionment. Taken together, these factors create and sustain
a chamber with a relatively stable composition over time, which suggests that
incumbency should have at least some explanatory power for Senate election
outcomes.

More specifically, a literal application of Gelman and King’s specific model
to Senate elections is problematic for three reasons.

First, terms in the Senate are three times a long as terms in the House. If
voters have short time horizons, then it is reasonable to hypothesize that ν1

may have less of an influence on Senate elections than on House elections.
1Gelman and King actually propose E(ν2) = β0 + β1ν1 + β2P2 + ψI2, but they define P2

as the party of the winner in the election at time t = 1. For clarity and consistency, I use P1

instead.
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Second, staggered Senate elections restrict the sample size for any given
electoral year to a maximum of 34 states, compared to 435 districts. Regression
analysis in a pair-wise comparison may not be appropriate for such limited data.

Finally, while one district elects one representative every two years, each
state elects two senators on a staggered schedule such that when one senator
stands for election, the other seat is not contested. Gelman and King’s model
for House elections does not capture this feature of Senate elections. Indeed,
because the previous election (for the seat being contested in the current elec-
tion) was last put to the vote six years ago, the party affiliation of the winner
in the more recent, alternate election (either two or four years ago) is a better
predictor for partisan swing.

Figure 1: Comparison of the party affiliation of the winner of the previous
election (open circles) and the party affiliation of the winner of the alternate
senate election (solid circles).
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As Figure 1 illustrates, using the party affiliation of the winner six years
ago produces a counter-intuitive measure of partisan swing. If incumbency
were a neutral factor, the Democratic proportion of the vote in 1966 should
be uncorrelated to the Democratic proportion of the vote in the 1960, 1962,
or 1964 elections. The points should be randomly distributed about the 45-
degree line. Using the 1960 data to predict the Democratic proportion of the
vote in 1966 shows that a higher proportion of the vote in 1960 is correlated
with a lower proportion in 1966; that other things being equal, incumbency is
a disadvantage. In contrast, using the 1964 and 1962 proportions in relation to
the 1966 data show a positive incumbency effect as more of the solid circles are
clustered above the 45 degree line. Thus, the model proposed below includes
an indicator for the party affiliation of the seat not being contested, and omits
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an indicator for the party affiliation of the winner of the election six years ago.

3 Estimating Incumbency Advantage

For any given state in election t, let Ot indicate the party affiliation of the
senator not up for reelection at time t such that if Ot is -1, the sitting senator
is a Republican and 1 if the sitting senator is a Democrat. The other variables
are defined as in the Gelman and King specification. For a Senate election at
time t:

E(νt) = β0 + β1νt−1 + β3Ot + ψIt (2)

This model is quite robust and parsimonious. Using the data set described
in Appendix A, the linear regression fit to this model for the Senate elections
occurring in 1966 is E(ν1966) = 0.335 + 0.274ν1960 + 0.003O1966 + 0.081ψ. A
β1 of 0.274 indicates that a ceteris paribus one percentage point increase in the
Democratic proportion of the 1960 vote will increase the Democratic proportion
of the 1966 vote by 0.274 percentage points. All other factors held equal, if
the senator not standing for election in 1966 is a Republican, the Democratic
proportion of the the 1966 vote total will decrease by 0.3 percentage points;
conversely if the other senator is a Democrat, the Democratic proportion of the
1966 vote total will increase by 0.3 percentage points. The marginal effect of
a Democratic incumbent on the Democratic proportion of the 1966 vote is a
positive 8.1 percentage points; an open seat has no effect; and a Republican
incumbent decreases the Democratic proportion of the vote by 8.1 percentage
points. The variation in the Democratic vote in the 1966 senate elections (R2)
accounted for in this model is 69.2%.

Table 1 summarizes the results of six other specifications, including a literal
application of Gelman and King’s model. I use the mean of the vector of R2

statistics as a measure for the overall fittedness of the model to the data. I
use the mean of ψ to evaluate whether the model over- or under-estimates ψ
relative to the best model (specified in equation 2). I use the 95% confidence
interval calculated from the vector of ψs as a measure of the variability in this
key causal variable.

An immediate observation is that excluding νt−1 in specification 4 results
in a markedly poorer fit than the other specifications. Consistent with Gelman
and King’s analysis of House elections, my model includes νt−1 to eliminate a
large source of potential bias.

Specifications which include Gelman and King’s Pt−1 variable increase the
variability observed in ψt, without an appreciable improvement in the fittedness
of the regression line. For example, comparing specifications 1 and 3 or 2 and 4
show a wider 95% confidence interval for the specification including Pt−1. Thus,
the model described by Equation 2 omits Gelman and King’s variable for the
party of the winner of the previous election.

Comparison of specifications 5 and 7 show that excluding Ot increases the
variability in ψ by about 70% and overestimates ψ. Hence, the model includes
Ot to refine and provide an accurate estimator for ψ.
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Table 1. Summary statistics for seven specifications.
(n = 38 for each specification)

Variables Included Mean R2 Mean ψ 95% CI for ψ
1 νt−1, Pt−1, Ot, It 0.60 0.029 (0.018, 0.040)
2◦ νt−1, Pt−1, It 0.57 0.027 (0.017, 0.038)
3* νt−1, Ot, It 0.58 0.030 (0.020, 0.039)
4 Pt−1, Ot, It 0.46 0.031 (0.019, 0.044)
5 νt−1, Pt−1, Ot, It−1, It 0.63 0.030 (0.018, 0.043)
6 νt−1, Ot, It−1, It 0.60 0.030 (0.021, 0.040)
7 νt−1, Pt−1, It−1, It 0.59 0.037 (0.015, 0.058)

* Specification given in this paper.

◦ Gelman and King’s specification applied to Senate elections.

Comparison of specifications 3 and 6 shows that including It−1 does not have
an appreciable effect on either the estimate of ψ or the 95% confidence interval.
In the interests of parsimony, It−1 is omitted from the specification.

4 Conclusion

Even after controlling for Democratic proportion in the previous Senate election
six years prior and the party affiliation of the other senator, the coefficient for ψ
remains significant and positive. Although no time-series trends were observed
in a pair-wise comparison of elections, incumbency advantage from 1912 to 1992
was estimated to be 3.0% on average, with a 95% confidence interval of (2.1%,
4.0%). Further research may require the construction of a pooled data set that
contains additional variables to control for systemic factors, such as the party
affiliation of the president and the party in control of Congress.

Appendix A: Data Documentation

This analysis utilizes a data set which covers elections to the U.S. Senate for the
period from 1912 to 1992. For each year-state combination, this data set initially
contained the Democratic proportion of the presidential vote, the Democratic
proportion of the Senate vote, incumbency status, the state’s electoral votes,
and the number of votes for the Democratic and Republican Senate candidates.
I do not consider the variable for the Democratic proportion of the presidential
vote in election t because it is not causally prior to the incumbency of the senator
standing for election and is only available every other congressional election.

I reclassify the incumbency variable to be -1 for a Republican incumbent,
0 for an open seat, and 1 for a Democratic incumbent to be consistent with
Gelman and King’s definitions. I generate a dummy variable for the party
affiliation of the other senator, coded 1 for a Democrat and -1 for a Republican.
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(See Appendix B for details.)
Since the proportion of the vote for the Democratic Senate candidate is my

dependent variable, I remove all elections missing this variable. Furthermore,
because it was inserted from another source in the original dataset, I replace
it with a proportion generated from the data on votes for the Democratic and
Republican candidates.

Because incumbency is the primary causal effect examined, and all the in-
cumbency variables are missing for 1916, I track down the missing incumbency
variables from http:\\www.senate.gov\.

Prior to 1958, there was a theoretical maximum of 32 senators up for elec-
tion at any one time. However, because the 17th Amendment (requiring that
Senators be elected by popular vote) was not ratified until 1913, the data for
1912 is largely incomplete, with data only for seven states. For elections from
1914 to the 1950s, there are usually 25 to 30 Senate seats in the data set. Af-
ter the 1950s, this increases to 30 to 34 senate seats. The size of the sample
expands over time because I remove elections not contested by one of the two
major parties, removing all the elections for which the Democratic proportion
of the Senate vote is 0 (for an election without a Democratic candidate) or 1
(for an election without a Republican candidate). This has the practical effect
that although Louisiana, South Carolina, and Mississippi had senators prior to
1950, 1956, and 1960, respectively, these were the first elections in which the
Republicans fielded senatorial candidates in those states. Alaska and Hawaii
did not become states until 1959, and they were not added to the data set until
1960 and 1958, respectively.

Table A. Summary statistics for U.S. Senate election data set, 1912–1992
(n = 1,178)

Democratic Party of Party of
Proportion Winner Other Senator Incumbency

mean 0.520 0.085 0.097 0.075
std. deviation 0.130 0.985 0.981 0.765
median 0.508 1 1 0
minimum 0.121 -1 -1 -1
maximum 0.943 1 1 1
1st quartile 0.446 1 -1 -1
3rd quartile 0.589 1 1 1
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Appendix B: Party Affiliation for the Senator Not
Facing Reelection

Because each state has two senators who are elected on a staggered schedule,
only one senator from a given state stands for election in any given election
year. I create a dummy variable to indicate the party affiliation of the senator
in the seat not up for reelection. This variable is coded 1 for a Democrat, and
-1 for a Republican.

I assume that the elections alternate such that one seat is contested, then
the other seat is contested, such that the seat that was contested in the previ-
ous election is not being contested in the current election. This variable may be
coded incorrectly for some states due to special mid-term elections, sitting sen-
ators from third parties, and other instances where an election year is missing
for the state. Before performing more detailed analysis on this variable, future
researchers should check the accuracy of the coding.

The data on the party affiliation on the sitting senator for the first election is
drawn from http://www.senate.gov/pagelayout/senators/f_two_sections_
with_teasers/states.htm.
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Appendix C: R Code

## This function loads the data from each "sXXX.txt" file into one data set.

> load.data <- function (end.year) {
+ result <- data.frame()
+ for (year in seq(912, end.year, by = 2)) {
+ file <- paste("s", year, ".txt", sep = "")
+ x <- read.table(file, col.names = c("year", "state", "dem.pres", "dem.sen",
"incum", "e.votes", "dem.votes", "rep.votes"), na.strings = "-9")
+ x$year <- 1000 + year
+ result <- rbind (result, x)
+ }
+ result
+ }

## I save this data object as "data1".

> data1 <- load.data(992)
> dim(data1)
[1] 2091 8

## Performing summary(data1) shows me that there are several problems
## with the data. The incumbency variable is coded on a 0 to 2 scale
## instead of a -1 to 1 scale. There are a lot of missing values in
## the dem.sen, incum, dem.votes, and rep.votes columns.

> summary(data1)
year state dem.pres dem.sen

Min. :1912 Min. : 1.00 Min. : 0.1173 Min. : 0.0000
1st Qu.:1932 1st Qu.:23.00 1st Qu.: 0.4098 1st Qu.: 0.4494
Median :1952 Median :43.00 Median : 0.4911 Median : 0.5186
Mean :1952 Mean :40.88 Mean : 0.5072 Mean : 0.5525
3rd Qu.:1972 3rd Qu.:61.00 3rd Qu.: 0.5807 3rd Qu.: 0.6247
Max. :1992 Max. :82.00 Max. : 1.0000 Max. : 1.0000

NA’s :1181.0000 NA’s :828.0000
incum e.votes dem.votes rep.votes

Min. : 0.000 Min. : 3.00 Min. : 0 Min. : 0
1st Qu.: 0.000 1st Qu.: 4.00 1st Qu.: 111939 1st Qu.: 87101
Median : 1.000 Median : 8.00 Median : 273779 Median : 220350
Mean : 1.183 Mean : 10.94 Mean : 520561 Mean : 471693
3rd Qu.: 2.000 3rd Qu.: 13.00 3rd Qu.: 634324 3rd Qu.: 577184
Max. : 9.000 Max. : 54.00 Max. :5173467 Max. :5143409
NA’s :843.000 NA’s :161.00 NA’s : 803 NA’s : 798
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## I begin by redefining the incumbency variable to match Gelman and
## King’s definition.

> new.incum <- data2$incum
> new.incum[data2$incum == 0] <- -1
> new.incum[data2$incum == 2] <- 0
> data2$incum <- new.incum

## Now, I check to see if the variable representing the Democratic
## proportion of a two-party vote (dem.sen). Because this data was
## entered from another source, I want to see how closely it matches
## the proportion calculated from the data in the data set.

> check <- (clean$dem.votes/(clean$dem.votes + clean$rep.votes)) - clean$dem.sen
> sum(check)
[1] 4.766263

## Because dem.sen seems to be off, I generate a new variable to represent
## the Democratic proportion of a two party vote from the data and replace
## dem.sen. I check to make sure that the new dem.sen is consistent with the data.

> data2$dem.sen <- data2$dem.votes/(data2$dem.votes + data2$rep.votes)
> check.new <- data2$dem.sen - data2$dem.votes/(data2$dem.votes + data2$rep.votes)
> sum(check.new)
[1] 0

## I subset out the uncontested elections.

> data2 <- data2[! data2$dem.sen %in% c(0,1),]

## I generate Gelman and King’s variable for the party affiliation of the
## winner of the previous election and check to make sure that it is entered
## correctly.

> dem.win <- ifelse(data2$dem.sen > 0.5, 1, -1)
> summary(dem.win)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0000 -1.0000 1.0000 0.0619 1.0000 1.0000
> data2 <- cbind(data2, dem.win)

## I excerpt out the electoral votes variable.

> data3 <- data2[c("year", "state", "dem.pres", "dem.sen", "incum", "dem.votes", "rep.votes", "dem.win")]

## I generate a dummy variable for each senate class (to indicate when a
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## particular senate seat comes up for reelection). This is for my reference
## in gathering additional data.

> c1 <- as.integer(data3$year %in% seq(1916, 1988, by = 6))
> c2 <- as.integer(data3$year %in% seq(1912, 1990, by = 6))
> c3 <- as.integer(data3$year %in% seq(1914, 1992, by = 6))
> c2 <- c2*2
> c3 <- c3*3
> class <- c1 + c2 + c3
> data3 <- cbind(data3, class)

## I fix this class variable for the two midterm elections in the data set.

> data3[data3$state == 82 & data3$year == 1990, c("class")] <- 1
> data3[data3$state == 82 & data3$year == 1990, c("class")] <- 3

## I see that there is no incumbency data for any of the 1916 elections.
## This interfers with my programs, so I insert this data.

> summary(data3[data3$year == 1916,c("incum")])
Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s

NaN 30
> fix.incum <- data3[data3$incum %in% c(NA),]
> data4 <- data3[! data3$incum %in% c(NA),]
> fix.incum <- read.table("incum.txt", col.names = c("year", "state",
"dem.pres", "dem.sen", "incum", "dem.votes", "rep.votes",
"dem.win", "class"), na.strings = "-9")
> data5 <- rbind(data4, fix.incum)

## The following function generates the dummy variable for the party affilation
## of the senator not up for election.

> other.sen.fn <- function (dataframe1) {
+ states <- c(1:6, 11:14, 21:25, 31:37, 40:49, 51:54, 56, 61:68, 71:73, 81:82)
+ result <- data.frame(year = dataframe1$year, state = dataframe1$state)
+ many.states <- data.frame()
+ for (s in states) {
+ one.state <- dataframe1[dataframe1$state == s,]
+ lag <- one.state$dem.win
+ x <- length(lag)
+ z <- x + 1
+ y <- array(NA, z)
+ y[2:z] <- lag
+ other.sen <- y[1:x]
+ one <- cbind(one.state, other.sen)
+ one.state <- one[c("year", "state", "other.sen")]
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+ many.states <- rbind(many.states, one.state)
+ }
+ merge(result, many.states, by = c("year", "state"))
+ }
> other <- other.sen.fn(data5)
> keep <- other[!other$other.sen %in% c(NA),]
> replace <- read.table("firsts.txt", col.names =
c("year", "state", "other.sen"))
> other <- rbind(keep, replace)
> data6 <- merge(data5, other, by = c("year", "state"))

## I insert additional variables for systemic comparisons.

> additional <- read.table("additional.txt", col.names =
c("year", "pres", "house", "senate", "div.gov"))
> data7 <- merge(data6, additional, by = c("year"))

## I define the variable congress to be 1 for Democratic control
## of both chambers, 0 if one party controls one and the other the
## other, and -1 for Republican control of both chambers.

> congress <- as.integer(data7$house + data7$senate == 0)
> congress <- congress*-1
> congress <- congress + as.integer(data7$house + data7$senate == 2)
> data8 <- cbind(data7, congress)
> data8 <- data8[c("year", "state", "dem.sen", "dem.win", "other.sen",
"pres", "congress", "div.gov", "incum")]
> clean <- data8

## I save this data object and begin my analysis.

> save(clean, file = "Senate.Rdata")
> dim(clean)
[1] 1178 9

## I generate summary statistics (Table A in Appendix A) for this dataset.

> summary(clean)
year state dem.sen dem.win other.sen pres

Min. :1912 Min. : 1.0 Min. :0.121 Min. :-1.0000 Min. :-1.0000 Min. :0.000
1st Qu.:1934 1st Qu.:22.0 1st Qu.:0.446 1st Qu.:-1.0000 1st Qu.:-1.0000 1st Qu.:0.000
Median :1956 Median :41.0 Median :0.508 Median : 1.0000 Median : 1.0000 Median :0.000
Mean :1954 Mean :39.4 Mean :0.520 Mean : 0.0849 Mean : 0.0968 Mean :0.487
3rd Qu.:1974 3rd Qu.:61.0 3rd Qu.:0.589 3rd Qu.: 1.0000 3rd Qu.: 1.0000 3rd Qu.:1.000
Max. :1992 Max. :82.0 Max. :0.943 Max. : 1.0000 Max. : 1.0000 Max. :1.000

congress div.gov incum
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Min. :-1.000 Min. :0.000 Min. :-1.0000
1st Qu.: 0.000 1st Qu.:0.000 1st Qu.:-1.0000
Median : 1.000 Median :0.000 Median : 0.0000
Mean : 0.469 Mean :0.309 Mean : 0.0747
3rd Qu.: 1.000 3rd Qu.:1.000 3rd Qu.: 1.0000
Max. : 1.000 Max. :1.000 Max. : 1.0000

> sd(clean$dem.sen)
[1] 0.130
> sd(clean$dem.win)
[1] 0.985
> sd(clean$other.sen)
[1] 0.981
> sd(clean$incum)
[1] 0.765

## I generate a sample for a sample pair-wise comparison.

> e1966 <- clean[year == 1966,]
> e1960 <- clean[year == 1960,]
> sample2 <- merge(e1966, e1960, by = c("state"), suffixes = c("", ".last"))
> e1964 <- clean[year == 1964,]
> sample2a <- merge(e1966, e1964, by = c("state"), suffixes = c("", ".last"))
> e1962 <- clean[year == 1962,]
> sample2b <- merge(e1966, e1962, by = c("state"), suffixes = c("", ".last"))

## I plot this data to show partisan swing. (Figure 1)

> postscript("oneyear.ps")
> plot.default(sample2$dem.sen.last, sample2$dem.sen, col = 2,
xlab = "Democratic Percentage in Previous Senate Election
(1960, 1962, 1964)", ylab = "Democratic Percentage in 1966",
main = "", xlim = 0:1, ylim = 0:1, axes = TRUE, xaxs = "i",
yaxs = "i", tcl = 0.25)
> points(sample2a$dem.sen, sample2a$dem.sen.last, pch = 20)
> points(sample2b$dem.sen, sample2b$dem.sen.last, pch = 20)
> abline(0,1)
> dev.off()
null device

1
## The following regression generates the coefficients
## for the sample pair-wise comparison.

> summary(lm(dem.sen ~ dem.sen.last + other.sen +
incum, data = sample2))

Call:
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lm(formula = dem.sen ~ dem.sen.last + other.sen +
incum, data = sample2)

Residuals:
Min 1Q Median 3Q Max

-0.11846 -0.03886 -0.00184 0.02922 0.16221

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.33464 0.07314 4.58 0.00012 ***
dem.sen.last 0.27384 0.13881 1.97 0.06015 .
other.sen 0.00339 0.01478 0.23 0.82043
incum 0.08147 0.02117 3.85 0.00077 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.063 on 24 degrees of freedom
Multiple R-Squared: 0.692,Adjusted R-squared: 0.654
F-statistic: 18 on 3 and 24 DF, p-value: 2.46e-06

## These are the specifications summarized in Table 1. The functions return
## data frames that allow me to easily view and manipulate the coefficients
## in other statistical programs and functions. I save the data frames with
## names like "test1" to correspond to "spec1"

> spec1
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA, Tb1 = NA,

beta2 = NA, Tb2 = NA, beta3 = NA, Tb3 = NA, psi = NA, Tpsi = NA,
R2 = NA)

for (y in elec) {
this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last + other.sen +

incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta2[results$year == y] <- x[3]
results$beta3[results$year == y] <- x[4]
results$psi[results$year == y] <- x[5]
results$Tb1[results$year == y] <- x[12]
results$Tb2[results$year == y] <- x[13]
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results$Tb3[results$year == y] <- x[14]
results$Tpsi[results$year == y] <- x[15]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test1 <- spec1(clean)
> spec2
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,

Tb1 = NA, beta2 = NA, Tb2 = NA, psi = NA, Tpsi = NA, R2 = NA)
for (y in elec) {

this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last +

incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta2[results$year == y] <- x[3]
results$psi[results$year == y] <- x[4]
results$Tb1[results$year == y] <- x[10]
results$Tb2[results$year == y] <- x[11]
results$Tpsi[results$year == y] <- x[12]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test2 <- spec2(clean)
> spec3
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm= NA, beta1 = NA,

Tb1 = NA, beta3 = NA, Tb3 = NA, psi = NA, Tpsi= NA, R2 = NA)
for (y in elec) {

this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + other.sen + incum,

data = new)
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sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta3[results$year == y] <- x[3]
results$psi[results$year == y] <- x[4]
results$Tb1[results$year == y] <- x[10]
results$Tb3[results$year == y] <- x[11]
results$Tpsi[results$year == y] <- x[12]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test3 <- spec3(clean)
> spec4
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta2 = NA,

Tb2 = NA, beta3 = NA, Tb3 = NA, psi = NA, Tpsi = NA, R2 = NA)
for (y in elec) {

this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.win.last + other.sen + incum,

data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta2[results$year == y] <- x[2]
results$beta3[results$year == y] <- x[3]
results$psi[results$year == y] <- x[4]
results$Tb2[results$year == y] <- x[10]
results$Tb3[results$year == y] <- x[11]
results$Tpsi[results$year == y] <- x[12]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test4 <- spec4(clean)
> spec5
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,

Tb1 = NA, beta2 = NA, Tb2 = NA, beta3 = NA, Tb3 = NA,
beta4 = NA, Tb4 = NA, psi = NA, Tpsi = NA, R2 = NA)
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for (y in elec) {
this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last + other.sen +

incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta2[results$year == y] <- x[3]
results$beta3[results$year == y] <- x[4]
results$beta4[results$year == y] <- x[5]
results$psi[results$year == y] <- x[6]
results$Tb1[results$year == y] <- x[14]
results$Tb2[results$year == y] <- x[15]
results$Tb3[results$year == y] <- x[16]
results$Tb4[results$year == y] <- x[17]
results$Tpsi[results$year == y] <- x[18]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test5 <- spec5(clean)
> spec6
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,

Tb1 = NA, beta3 = NA, Tb3 = NA, beta4 = NA, Tb4 = NA,
psi = NA, Tpsi = NA, R2 = NA)

for (y in elec) {
this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + other.sen +

incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta3[results$year == y] <- x[3]
results$beta4[results$year == y] <- x[4]
results$psi[results$year == y] <- x[5]
results$Tb1[results$year == y] <- x[12]
results$Tb3[results$year == y] <- x[13]

15



results$Tb4[results$year == y] <- x[14]
results$Tpsi[results$year == y] <- x[15]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test5 <- spec5(clean)
> spec6
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,

Tb1 = NA, beta3 = NA, Tb3 = NA, beta4 = NA, Tb4 = NA,
psi = NA, Tpsi = NA, R2 = NA)

for (y in elec) {
this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),

suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + other.sen +

incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta3[results$year == y] <- x[3]
results$beta4[results$year == y] <- x[4]
results$psi[results$year == y] <- x[5]
results$Tb1[results$year == y] <- x[12]
results$Tb3[results$year == y] <- x[13]
results$Tb4[results$year == y] <- x[14]
results$Tpsi[results$year == y] <- x[15]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test6 <- spec6(clean)
> spec7
function(df) {

elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, beta1 = NA, Tb1 = NA,

beta2 = NA, Tb2 = NA, beta4 = NA, Tb4 = NA, psi = NA,
Tpsi = NA, R2 = NA)

for (y in elec) {
this.elec <- df[df$year %in% c(y),]
last.elec <- df[df$year %in% c(y - 6),]
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new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))

lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last +
incum.last + incum, data = new)

sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
results$beta1[results$year == y] <- x[2]
results$beta2[results$year == y] <- x[3]
results$beta4[results$year == y] <- x[4]
results$psi[results$year == y] <- x[5]
results$Tb1[results$year == y] <- x[12]
results$Tb2[results$year == y] <- x[13]
results$Tb4[results$year == y] <- x[14]
results$Tpsi[results$year == y] <- x[15]
results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917

}
results

}
> test7 <- spec7(clean)

## The following function generates the mean and 95% confidence
## intervals on the vector of psi values for any given specification.

> psi.ci <- function(test) {
+ coeff <- c(summary(lm(psi ~ 1, data = test))$coefficients)
+ a <- coeff[1]
+ b <- coeff[2]
+ c <- coeff[1] - 1.96*b
+ d <- coeff[1] + 1.96*b
+ cat("The mean, and lower and upper bounds on the 95% confidence
interval are:\n", a, c, d)
+ }

## The 95% confidence intervals for psi from each specification are
## summarized in Table 1.

> psi.ci(test1)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0291 0.0182 0.04

> psi.ci(test2)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0274 0.0171 0.0377
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> psi.ci(test3)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0297 0.0201 0.0394

> psi.ci(test4)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0313 0.0192 0.0435

> psi.ci(test5)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0301 0.0175 0.0427

> psi.ci(test6)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0304 0.0205 0.0404

> psi.ci(test7)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0366 0.0154 0.0579

## The mean R^2 values are also summarized in Table 1.

> mean(test1$R2)
[1] 0.604
> mean(test2$R2)
[1] 0.57
> mean(test3$R2)
[1] 0.576
> mean(test4$R2)
[1] 0.458
> mean(test5$R2)
[1] 0.625
> mean(test6$R2)
[1] 0.602
> mean(test7$R2)
[1] 0.591

## The 70% figure on page 4, in the first full paragraph, is from:

> (0.0366-0.0154)/(0.0301-0.0175)
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[1] 1.68

## For Appendix A, this function returns the first year in the
## data set:

> first.elec <- function(df) {
+ states <- c(1:6, 11:14, 21:25, 31:37, 40:49, 51:54,
56, 61:68, 71:73, 81:82)
+ results <- data.frame(state = states, first.elec = NA)
+ for (s in states){
+ x <- df[df$state == s,]
+ y <- min(x$year)
+ results$first.elec[results$state == s] <- y
+ }
+ results
+ }
> first.elec(clean)

state first.elec
1 1 1914
2 2 1912
3 3 1916
4 4 1914
5 5 1916
6 6 1916
7 11 1916
8 12 1916
9 13 1914
10 14 1914
11 21 1914
12 22 1914
13 23 1916
14 24 1914
15 25 1914
16 31 1914
17 32 1912
18 33 1912
19 34 1914
20 35 1916
21 36 1914
22 37 1914
23 40 1922
24 41 1914
25 42 1914
26 43 1916
27 44 1918
28 45 1950
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29 46 1960
30 47 1914
31 48 1956
32 49 1916
33 51 1914
34 52 1914
35 53 1912
36 54 1916
37 56 1916
38 61 1914
39 62 1912
40 63 1914
41 64 1912
42 65 1914
43 66 1916
44 67 1914
45 68 1916
46 71 1914
47 72 1912
48 73 1914
49 81 1960
50 82 1958

## The following function counts the number of states in each
## election congressional election year.

> elections <- table(clean$year, clean$state)
> check.elec <- function(tb) {
+ elec <- seq(1912, 1992, by = 2)
+ results <- data.frame(year = elec, states = NA)
+ n <- nrow(tb)
+ for (i in 1:n) {
+ s <- sum(tb[i,])
+ results[i, c("states")] <- s
+ }
+ results
+ }
> check.elec(elections)

year states
1 1912 7
2 1914 27
3 1916 30
4 1918 25
5 1920 29
6 1922 29
7 1924 28
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8 1926 28
9 1928 28
10 1930 25
11 1932 29
12 1934 26
13 1936 25
14 1938 29
15 1940 27
16 1942 24
17 1944 29
18 1946 31
19 1948 27
20 1950 28
21 1952 27
22 1954 25
23 1956 28
24 1958 31
25 1960 29
26 1962 33
27 1964 32
28 1966 30
29 1968 32
30 1970 30
31 1972 33
32 1974 31
33 1976 30
34 1978 30
35 1980 33
36 1982 32
37 1984 31
38 1986 34
39 1988 33
40 1990 31
41 1992 33

## The following graph shows that there is no trend in
## psi over time.

> postscript("psitime.ps")
> plot.default(test3$year, test3$psi, type = "l", xlab = "Year", ylab = "Psi", axes = TRUE, xaxs = "i", yaxs = "i", tcl = 0.25)
> abline(0,0)
> dev.off()
null device

1
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Optional Figure. ψ over time for specification three.
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## The following function shows that there is no trend in
## psi over time.

> psi
function(test) {
x1 <- summary(lm(psi ~ 1, data = test))
x2 <- summary(lm(psi ~ year.norm, data = test))
x3 <- summary(lm(psi ~ 1, data = test[1:17,]))
x4 <- summary(lm(psi ~ year.norm, data = test[1:17,]))
x5 <- summary(lm(psi ~ 1, data = test[18:38,]))
x6 <- summary(lm(psi ~ year.norm, data = test[18:38,]))
return(x1$call, x1$coefficients, x2$call, x2$coefficients,

x3$call, x3$coefficients, x4$call, x4$coefficients,
x5$call, x5$coefficients, x6$call, x6$coefficients)
}

## While the intercept for psi is significant, the rate
## of variation for psi against year is not. Thus, even
## when I subset the data into before 1950 and 1950 and after,
## I find no time-trends on psi.
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> psi(test3)
lm(formula = psi ~ 1, data = test)

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0297 0.00492 6.03 5.69e-07

lm(formula = psi ~ year.norm, data = test)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.021830 0.009872 2.21 0.0334
year.norm 0.000207 0.000225 0.92 0.3633

lm(formula = psi ~ 1, data = test[1:17, ])
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.023 0.00575 4 0.00103

lm(formula = psi ~ year.norm, data = test[1:17, ])
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.04206 0.010437 4.03 0.00109
year.norm -0.00112 0.000532 -2.11 0.05207

lm(formula = psi ~ 1, data = test[18:38, ])
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0351 0.00752 4.68 0.000145

lm(formula = psi ~ year.norm, data = test[18:38, ])
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.012333 0.03545 0.348 0.732
year.norm 0.000415 0.00063 0.659 0.518

## The following function generates a pooled data set.

> pooled <- function(df) {
+ elec <- seq(1918, 1992, by = 2)
+ results <- data.frame()
+ for (y in elec) {
+ this.elec <- df[df$year %in% c(y),]
+ last.elec <- df[df$year %in% c(y - 6),]
+ new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
+ results <- rbind(new, results)
+ }
+ results
+ }
> data9 <- pooled(clean)
> all.years <- data9[c("year", "state", "dem.sen", "dem.sen.last",
"dem.win.last", "pres", "div.gov", "other.sen", "
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congress", "incum")]
> summary(all.years)

year state dem.sen dem.sen.last dem.win.last pres
Min. :1918 Min. : 1.0 Min. :0.127 Min. :0.121 Min. :-1.0000 Min. :0.000
1st Qu.:1938 1st Qu.:21.0 1st Qu.:0.444 1st Qu.:0.446 1st Qu.:-1.0000 1st Qu.:0.000
Median :1958 Median :37.0 Median :0.504 Median :0.503 Median : 1.0000 Median :0.000
Mean :1957 Mean :39.1 Mean :0.514 Mean :0.513 Mean : 0.0609 Mean :0.454
3rd Qu.:1976 3rd Qu.:62.0 3rd Qu.:0.582 3rd Qu.:0.579 3rd Qu.: 1.0000 3rd Qu.:1.000
Max. :1992 Max. :82.0 Max. :0.929 Max. :0.943 Max. : 1.0000 Max. :1.000

div.gov other.sen congress incum
Min. :0.00 Min. :-1.0000 Min. :-1.000 Min. :-1.0000
1st Qu.:0.00 1st Qu.:-1.0000 1st Qu.: 0.000 1st Qu.:-1.0000
Median :0.00 Median : 1.0000 Median : 1.000 Median : 0.0000
Mean :0.33 Mean : 0.0455 Mean : 0.451 Mean : 0.0658
3rd Qu.:1.00 3rd Qu.: 1.0000 3rd Qu.: 1.000 3rd Qu.: 1.0000
Max. :1.00 Max. : 1.0000 Max. : 1.000 Max. : 1.0000

> row.names(all.years) <- seq(nrow(all.years))

Appendix C: LATEX Code

\begin{table}[h]
\begin{center}
Table A. Summary statistics for U.S. Senate election dataset, 1912 - 1992 \\(n = 1,178)}
\begin{tabular}{lcccc}
\\
& Democratic & Party of & Party of & \\
& Proportion & Winner & Other Senator & Incumbency \\
\hline
mean & 0.520 & 0.085 & 0.097 & 0.075 \\
std. deviation & 0.130 & 0.985 & 0.981 & 0.765 \\
median & 0.508 & 1 & 1 & 0 \\
minimum & 0.121 & -1 & -1 & -1 \\
maximum & 0.943 & 1 & 1 & 1 \\
1st quartile & 0.446 & 1 & -1 & -1 \\
3rd quartile & 0.589 & 1 & 1 & 1 \\
\hline
\end{tabular}
\end{center}
\end{table}
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Table B. Party affiliation of the senator not up for election, for the first election.

State ICPSR Year of First Election Party Affiliation of Non-Contested Seat
Connecticut 1 1914 0
Maine 2 1912 -1
Massachusetts 3 1916 1
New Hampshire 4 1914 1
Rhode Island 5 1916 1
Vermont 6 1916 1
Delaware 11 1916 1
New Jersey 12 1916 1
New York 13 1914 1
Pennsylvania 14 1914 -1
Illinois 21 1914 0
Indiana 22 1914 1
Michigan 23 1916 1
Ohio 24 1914 1
Wisconsin 25 1914 0
Iowa 31 1914 0
Kansas 32 1912 0
Minnesota 33 1912 0
Missouri 34 1914 1
Nebraska 35 1916 1
N. Dakota 36 1914 0
S. Dakota 37 1914 0
Virginia 40 1922 1
Alabama 41 1914 1
Arkansas 42 1914 1
Florida 43 1916 1
Georgia 44 1918 1
Louisiana 45 1950 1
Mississippi 46 1960 1
N. Carolina 47 1914 1
S. Carolina 48 1956 1
Texas 49 1916 -1
Kentucky 51 1914 1
Maryland 52 1914 1
Oklahoma 53 1912 1
Tennessee 54 1916 1
W. Virginia 56 1916 1
Arizona 61 1914 1
Colorado 62 1912 1
Idaho 63 1914 0
Montana 64 1912 1
Nevada 65 1914 1
New Mexico 66 1918 -1
Utah 67 1914 0
Wyoming 68 1916 -1
California 71 1914 0
Oregon 72 1912 1
Washington 73 1914 0
Alaska 81 1960 1
Hawaii 82 1958 1
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