Gov 1000 Midterm 2:
 Incumbency Advantage in U.S. Senate Elections
 (1912-1992)

The Li'l Dictator
November 21, 2002

Abstract

This paper modifies Gelman and King's (1990) study of incumbency advantage in the U.S. House of Representatives to study incumbency advantage in the U.S. Senate. After controlling for state-specific factors, incumbency advantage remains positive and significant, averaging 3.0\% from 1912 to 1992 , with a 95% confidence interval of ($2.1 \%, 4.0 \%$).

1 Introduction

While other scholars have studied incumbency advantage in elections to the U.S. House of Representatives, incumbency advantage in the U.S. Senate remains unexplored. This paper modifies Gelman and King's (1990) study of incumbency advantage in the House to study incumbency advantage in the Senate. After controlling for state-specific factors (such as the Democratic candidate's proportion of the vote in the previous election, six years prior, and the party affiliation of the other senator), incumbency advantage in senate elections averages 3.0%, with a 95% confidence interval from 2.1% to 4.0%.

2 Problems Applying Gelman and King's Model to Senate Elections

Gelman and King propose the following model for estimating incumbency advantage for House elections in a given congressional district:

$$
\begin{equation*}
E\left(\nu_{2}\right)=\beta_{0}+\beta_{1} \nu_{1}+\beta_{2} P_{1}+\psi I_{2} . \tag{1}
\end{equation*}
$$

They define ν_{t} as the proportion that the Democratic candidate receives in election $t=(1,2) . \quad P_{t}$ is the party of the winner in election $1 .{ }^{1}$ A dummy variable I_{2} is -1 for a Republican incumbent, 0 for an open seat, and 1 for a Democratic incumbent. In a manner consistent with the other literature on incumbency advantage, Gelman and King do not consider uncontested elections.

Applying this model to Senate elections is problematic because the Senate is a qualitatively different institution than the House. The framers of the Constitution intended that the Senate act as a stabilizing force against the populist House. For example, until ratification of the 17th Amendment in 1913, senators were selected by state legislatures rather than by popular vote. Senators serve six year terms and are divided into three classes, with only one class standing for election in any given congressional election year. Unlike congressional districts, states (the geographic unit of Senate representation) are not subject to either redistricting or reapportionment. Taken together, these factors create and sustain a chamber with a relatively stable composition over time, which suggests that incumbency should have at least some explanatory power for Senate election outcomes.

More specifically, a literal application of Gelman and King's specific model to Senate elections is problematic for three reasons.

First, terms in the Senate are three times a long as terms in the House. If voters have short time horizons, then it is reasonable to hypothesize that ν_{1} may have less of an influence on Senate elections than on House elections.

[^0]Second, staggered Senate elections restrict the sample size for any given electoral year to a maximum of 34 states, compared to 435 districts. Regression analysis in a pair-wise comparison may not be appropriate for such limited data.

Finally, while one district elects one representative every two years, each state elects two senators on a staggered schedule such that when one senator stands for election, the other seat is not contested. Gelman and King's model for House elections does not capture this feature of Senate elections. Indeed, because the previous election (for the seat being contested in the current election) was last put to the vote six years ago, the party affiliation of the winner in the more recent, alternate election (either two or four years ago) is a better predictor for partisan swing.

Figure 1: Comparison of the party affiliation of the winner of the previous election (open circles) and the party affiliation of the winner of the alternate senate election (solid circles).

As Figure 1 illustrates, using the party affiliation of the winner six years ago produces a counter-intuitive measure of partisan swing. If incumbency were a neutral factor, the Democratic proportion of the vote in 1966 should be uncorrelated to the Democratic proportion of the vote in the 1960, 1962, or 1964 elections. The points should be randomly distributed about the 45degree line. Using the 1960 data to predict the Democratic proportion of the vote in 1966 shows that a higher proportion of the vote in 1960 is correlated with a lower proportion in 1966; that other things being equal, incumbency is a disadvantage. In contrast, using the 1964 and 1962 proportions in relation to the 1966 data show a positive incumbency effect as more of the solid circles are clustered above the 45 degree line. Thus, the model proposed below includes an indicator for the party affiliation of the seat not being contested, and omits
an indicator for the party affiliation of the winner of the election six years ago.

3 Estimating Incumbency Advantage

For any given state in election t, let O_{t} indicate the party affiliation of the senator not up for reelection at time t such that if O_{t} is -1 , the sitting senator is a Republican and 1 if the sitting senator is a Democrat. The other variables are defined as in the Gelman and King specification. For a Senate election at time t :

$$
\begin{equation*}
E\left(\nu_{t}\right)=\beta_{0}+\beta_{1} \nu_{t-1}+\beta_{3} O_{t}+\psi I_{t} \tag{2}
\end{equation*}
$$

This model is quite robust and parsimonious. Using the data set described in Appendix A, the linear regression fit to this model for the Senate elections occurring in 1966 is $E\left(\nu_{1966}\right)=0.335+0.274 \nu_{1960}+0.003 O_{1966}+0.081 \psi$. A β_{1} of 0.274 indicates that a ceteris paribus one percentage point increase in the Democratic proportion of the 1960 vote will increase the Democratic proportion of the 1966 vote by 0.274 percentage points. All other factors held equal, if the senator not standing for election in 1966 is a Republican, the Democratic proportion of the the 1966 vote total will decrease by 0.3 percentage points; conversely if the other senator is a Democrat, the Democratic proportion of the 1966 vote total will increase by 0.3 percentage points. The marginal effect of a Democratic incumbent on the Democratic proportion of the 1966 vote is a positive 8.1 percentage points; an open seat has no effect; and a Republican incumbent decreases the Democratic proportion of the vote by 8.1 percentage points. The variation in the Democratic vote in the 1966 senate elections $\left(R^{2}\right)$ accounted for in this model is 69.2%.

Table 1 summarizes the results of six other specifications, including a literal application of Gelman and King's model. I use the mean of the vector of R^{2} statistics as a measure for the overall fittedness of the model to the data. I use the mean of ψ to evaluate whether the model over- or under-estimates ψ relative to the best model (specified in equation 2). I use the 95% confidence interval calculated from the vector of ψ s as a measure of the variability in this key causal variable.

An immediate observation is that excluding ν_{t-1} in specification 4 results in a markedly poorer fit than the other specifications. Consistent with Gelman and King's analysis of House elections, my model includes ν_{t-1} to eliminate a large source of potential bias.

Specifications which include Gelman and King's P_{t-1} variable increase the variability observed in ψ_{t}, without an appreciable improvement in the fittedness of the regression line. For example, comparing specifications 1 and 3 or 2 and 4 show a wider 95% confidence interval for the specification including P_{t-1}. Thus, the model described by Equation 2 omits Gelman and King's variable for the party of the winner of the previous election.

Comparison of specifications 5 and 7 show that excluding O_{t} increases the variability in ψ by about 70% and overestimates ψ. Hence, the model includes O_{t} to refine and provide an accurate estimator for ψ.

Table 1. Summary statistics for seven specifications.
($\mathrm{n}=38$ for each specification)

	Variables Included	Mean R^{2}	Mean ψ	95% CI for ψ
1	$\nu_{t-1}, P_{t-1}, O_{t}, I_{t}$	0.60	0.029	$(0.018,0.040)$
$2 \circ$	$\nu_{t-1}, P_{t-1}, I_{t}$	0.57	0.027	$(0.017,0.038)$
3^{*}	ν_{t-1}, O_{t}, I_{t}	0.58	0.030	$(0.020,0.039)$
4	P_{t-1}, O_{t}, I_{t}	0.46	0.031	$(0.019,0.044)$
5	$\nu_{t-1}, P_{t-1}, O_{t}, I_{t-1}, I_{t}$	0.63	0.030	$(0.018,0.043)$
6	$\nu_{t-1}, O_{t}, I_{t-1}, I_{t}$	0.60	0.030	$(0.021,0.040)$
7	$\nu_{t-1}, P_{t-1}, I_{t-1}, I_{t}$	0.59	0.037	$(0.015,0.058)$

* Specification given in this paper.
- Gelman and King's specification applied to Senate elections.

Comparison of specifications 3 and 6 shows that including I_{t-1} does not have an appreciable effect on either the estimate of ψ or the 95% confidence interval. In the interests of parsimony, I_{t-1} is omitted from the specification.

4 Conclusion

Even after controlling for Democratic proportion in the previous Senate election six years prior and the party affiliation of the other senator, the coefficient for ψ remains significant and positive. Although no time-series trends were observed in a pair-wise comparison of elections, incumbency advantage from 1912 to 1992 was estimated to be 3.0% on average, with a 95% confidence interval of $(2.1 \%$, 4.0%). Further research may require the construction of a pooled data set that contains additional variables to control for systemic factors, such as the party affiliation of the president and the party in control of Congress.

Appendix A: Data Documentation

This analysis utilizes a data set which covers elections to the U.S. Senate for the period from 1912 to 1992. For each year-state combination, this data set initially contained the Democratic proportion of the presidential vote, the Democratic proportion of the Senate vote, incumbency status, the state's electoral votes, and the number of votes for the Democratic and Republican Senate candidates. I do not consider the variable for the Democratic proportion of the presidential vote in election t because it is not causally prior to the incumbency of the senator standing for election and is only available every other congressional election.

I reclassify the incumbency variable to be -1 for a Republican incumbent, 0 for an open seat, and 1 for a Democratic incumbent to be consistent with Gelman and King's definitions. I generate a dummy variable for the party affiliation of the other senator, coded 1 for a Democrat and -1 for a Republican.
(See Appendix B for details.)
Since the proportion of the vote for the Democratic Senate candidate is my dependent variable, I remove all elections missing this variable. Furthermore, because it was inserted from another source in the original dataset, I replace it with a proportion generated from the data on votes for the Democratic and Republican candidates.

Because incumbency is the primary causal effect examined, and all the incumbency variables are missing for 1916, I track down the missing incumbency variables from http:
www. senate.gov \backslash.

Prior to 1958 , there was a theoretical maximum of 32 senators up for election at any one time. However, because the 17 th Amendment (requiring that Senators be elected by popular vote) was not ratified until 1913, the data for 1912 is largely incomplete, with data only for seven states. For elections from 1914 to the 1950s, there are usually 25 to 30 Senate seats in the data set. After the 1950 s , this increases to 30 to 34 senate seats. The size of the sample expands over time because I remove elections not contested by one of the two major parties, removing all the elections for which the Democratic proportion of the Senate vote is 0 (for an election without a Democratic candidate) or 1 (for an election without a Republican candidate). This has the practical effect that although Louisiana, South Carolina, and Mississippi had senators prior to 1950, 1956, and 1960, respectively, these were the first elections in which the Republicans fielded senatorial candidates in those states. Alaska and Hawaii did not become states until 1959, and they were not added to the data set until 1960 and 1958 , respectively.

Table A. Summary statistics for U.S. Senate election data set, 1912-1992

$$
(\mathrm{n}=1,178)
$$

	Democratic Proportion	Party of Winner	Party of Other Senator	Incumbency
mean	0.520	0.085	0.097	0.075
std. deviation	0.130	0.985	0.981	0.765
median	0.508	1	1	0
minimum	0.121	-1	-1	-1
maximum	0.943	1	1	1
1st quartile	0.446	1	-1	-1
3rd quartile	0.589	1	1	1

Appendix B: Party Affiliation for the Senator Not Facing Reelection

Because each state has two senators who are elected on a staggered schedule, only one senator from a given state stands for election in any given election year. I create a dummy variable to indicate the party affiliation of the senator in the seat not up for reelection. This variable is coded 1 for a Democrat, and -1 for a Republican.

I assume that the elections alternate such that one seat is contested, then the other seat is contested, such that the seat that was contested in the previous election is not being contested in the current election. This variable may be coded incorrectly for some states due to special mid-term elections, sitting senators from third parties, and other instances where an election year is missing for the state. Before performing more detailed analysis on this variable, future researchers should check the accuracy of the coding.

The data on the party affiliation on the sitting senator for the first election is drawn from http://www.senate.gov/pagelayout/senators/f_two_sections_ with_teasers/states.htm.

Appendix C: R Code

```
## This function loads the data from each "sXXX.txt" file into one data set.
> load.data <- function (end.year) {
+ result <- data.frame()
+ for (year in seq(912, end.year, by = 2)) {
+ file <- paste("s", year, ".txt", sep = "")
+ x <- read.table(file, col.names = c("year", "state", "dem.pres", "dem.sen",
"incum", "e.votes", "dem.votes", "rep.votes"), na.strings = "-9")
+ x$year <- 1000 + year
+ result <- rbind (result, x)
+ }
+ result
+ }
## I save this data object as "data1".
> data1 <- load.data(992)
> dim(data1)
[1] 2091 8
## Performing summary(data1) shows me that there are several problems
## with the data. The incumbency variable is coded on a 0 to 2 scale
## instead of a -1 to 1 scale. There are a lot of missing values in
## the dem.sen, incum, dem.votes, and rep.votes columns.
```



```
## I begin by redefining the incumbency variable to match Gelman and
## King's definition.
> new.incum <- data2$incum
> new.incum[data2$incum == 0] <- -1
> new.incum[data2$incum == 2] <- 0
> data2$incum <- new.incum
## Now, I check to see if the variable representing the Democratic
## proportion of a two-party vote (dem.sen). Because this data was
## entered from another source, I want to see how closely it matches
## the proportion calculated from the data in the data set.
> check <- (clean$dem.votes/(clean$dem.votes + clean$rep.votes)) - clean$dem.sen
> sum(check)
[1] 4.766263
## Because dem.sen seems to be off, I generate a new variable to represent
## the Democratic proportion of a two party vote from the data and replace
## dem.sen. I check to make sure that the new dem.sen is consistent with the data.
> data2$dem.sen <- data2$dem.votes/(data2$dem.votes + data2$rep.votes)
> check.new <- data2$dem.sen - data2$dem.votes/(data2$dem.votes + data2$rep.votes)
> sum(check.new)
[1] 0
## I subset out the uncontested elections.
> data2 <- data2[! data2$dem.sen %in% c(0,1),]
## I generate Gelman and King's variable for the party affiliation of the
## winner of the previous election and check to make sure that it is entered
## correctly.
> dem.win <- ifelse(data2$dem.sen > 0.5, 1, -1)
> summary(dem.win)
    Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.0000-1.0000 1.0000 0.0619 1.0000 1.0000
> data2 <- cbind(data2, dem.win)
## I excerpt out the electoral votes variable.
> data3 <- data2[c("year", "state", "dem.pres", "dem.sen", "incum", "dem.votes", "rep.votes'
## I generate a dummy variable for each senate class (to indicate when a
```

```
## particular senate seat comes up for reelection). This is for my reference
## in gathering additional data.
```

```
> c1 <- as.integer(data3$year %in% seq(1916, 1988, by = 6))
```

> c1 <- as.integer(data3$year %in% seq(1916, 1988, by = 6))
> c2 <- as.integer(data3$year %in% seq(1912, 1990, by = 6))
> c2 <- as.integer(data3$year %in% seq(1912, 1990, by = 6))
> c3 <- as.integer(data3$year %in% seq(1914, 1992, by = 6))
> c3 <- as.integer(data3\$year %in% seq(1914, 1992, by = 6))
> c2 <- c2*2
> c2 <- c2*2
> c3 <- c3*3
> c3 <- c3*3
> class <- c1 + c2 + c3
> class <- c1 + c2 + c3
> data3 <- cbind(data3, class)
> data3 <- cbind(data3, class)

I fix this class variable for the two midterm elections in the data set.

> data3[data3$state == 82 & data3$year == 1990, c("class")] <- 1
> data3[data3$state == 82 & data3$year == 1990, c("class")] <- 3

I see that there is no incumbency data for any of the 1916 elections.

This interfers with my programs, so I insert this data.

```
```

> summary(data3[data3\$year == 1916,c("incum")])

```
> summary(data3[data3$year == 1916,c("incum")])
    Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
    Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
                                    NaN
                                    NaN
                            30
                            30
> fix.incum <- data3[data3$incum %in% c(NA),]
> fix.incum <- data3[data3$incum %in% c(NA),]
> data4 <- data3[! data3$incum %in% c(NA),]
> data4 <- data3[! data3$incum %in% c(NA),]
> fix.incum <- read.table("incum.txt", col.names = c("year", "state",
> fix.incum <- read.table("incum.txt", col.names = c("year", "state",
"dem.pres", "dem.sen", "incum", "dem.votes", "rep.votes",
"dem.pres", "dem.sen", "incum", "dem.votes", "rep.votes",
"dem.win", "class"), na.strings = "-9")
"dem.win", "class"), na.strings = "-9")
> data5 <- rbind(data4, fix.incum)
> data5 <- rbind(data4, fix.incum)
## The following function generates the dummy variable for the party affilation
## The following function generates the dummy variable for the party affilation
## of the senator not up for election.
## of the senator not up for election.
> other.sen.fn <- function (dataframe1) {
> other.sen.fn <- function (dataframe1) {
+ states <- c(1:6, 11:14, 21:25, 31:37, 40:49, 51:54, 56, 61:68, 71:73, 81:82)
+ states <- c(1:6, 11:14, 21:25, 31:37, 40:49, 51:54, 56, 61:68, 71:73, 81:82)
+ result <- data.frame(year = dataframe1$year, state = dataframe1$state)
+ result <- data.frame(year = dataframe1$year, state = dataframe1$state)
+ many.states <- data.frame()
+ many.states <- data.frame()
+ for (s in states) {
+ for (s in states) {
+ one.state <- dataframe1[dataframe1$state == s,]
+ one.state <- dataframe1[dataframe1$state == s,]
+ lag <- one.state$dem.win
+ lag <- one.state$dem.win
+ x <- length(lag)
+ x <- length(lag)
+ z <- x + 1
+ z <- x + 1
+ y <- array(NA, z)
+ y <- array(NA, z)
+ y[2:z] <- lag
+ y[2:z] <- lag
+ other.sen <- y[1:x]
+ other.sen <- y[1:x]
+ one <- cbind(one.state, other.sen)
+ one <- cbind(one.state, other.sen)
+ one.state <- one[c("year", "state", "other.sen")]
```

+ one.state <- one[c("year", "state", "other.sen")]

```
```

+ many.states <- rbind(many.states, one.state)
+ }
+ merge(result, many.states, by = c("year", "state"))
+ }
> other <- other.sen.fn(data5)
> keep <- other[!other\$other.sen %in% c(NA),]
> replace <- read.table("firsts.txt", col.names =
c("year", "state", "other.sen"))
> other <- rbind(keep, replace)
> data6 <- merge(data5, other, by = c("year", "state"))

```
\#\# I insert additional variables for systemic comparisons.
> additional <- read.table("additional.txt", col.names =
c("year", "pres", "house", "senate", "div.gov"))
> data7 <- merge(data6, additional, by = c("year"))
\#\# I define the variable congress to be 1 for Democratic control
\#\# of both chambers, 0 if one party controls one and the other the
\#\# other, and -1 for Republican control of both chambers.
> congress <- as.integer (data7\$house + data7\$senate \(==0\) )
> congress <- congress*-1
> congress <- congress + as.integer (data7\$house + data7\$senate == 2)
> data8 <- cbind(data7, congress)
> data8 <- data8[c("year", "state", "dem.sen", "dem.win", "other.sen",
"pres", "congress", "div.gov", "incum")]
> clean <- data8
\#\# I save this data object and begin my analysis.
```

> save(clean, file = "Senate.Rdata")

```
> dim(clean)
[1] 11789
\#\# I generate summary statistics (Table A in Appendix A) for this dataset.
\begin{tabular}{|c|c|c|c|c|c|}
\hline year & state & dem.sen & dem.win & other.sen & pr \\
\hline Min. :1912 & Min. : 1.0 & Min. \(: 0.121\) & Min. :-1.0000 & Min. : -1.0000 & Min. \\
\hline 1st Qu.:1934 & 1st Qu.:22.0 & 1st Qu.:0.446 & 1st Qu.:-1.0000 & 1st Qu.:-1.0000 & 1st Qu. \\
\hline Median :1956 & Median : 41.0 & Median :0.508 & Median : 1.0000 & Median : 1.0000 & Median \\
\hline Mean :1954 & Mean :39.4 & Mean :0.520 & Mean : 0.0849 & Mean : 0.0968 & Mean \\
\hline 3rd Qu.:1974 & 3rd Qu.:61.0 & 3rd Qu.:0.589 & 3rd Qu.: 1.0000 & 3rd Qu.: 1.0000 & 3rd Qu. \\
\hline Max. :1992 & Max. \(: 82.0\) & Max. :0.943 & Max. : 1.0000 & Max. : 1.0000 & Max. \\
\hline congress & div.gov & incum & & & \\
\hline
\end{tabular}
```

Min. :-1.000 Min. :0.000 Min. :-1.0000
1st Qu.: 0.000 1st Qu.:0.000 1st Qu.:-1.0000
Median : 1.000 Median :0.000 Median : 0.0000
Mean : 0.469 Mean :0.309 Mean : 0.0747
3rd Qu.: 1.000 3rd Qu.:1.000 3rd Qu.: 1.0000
Max. : 1.000 Max. :1.000 Max. : 1.0000
> sd(clean$dem.sen)
[1] 0.130
> sd(clean$dem.win)
[1] 0.985
> sd(clean$other.sen)
[1] 0.981
> sd(clean$incum)
[1] 0.765

I generate a sample for a sample pair-wise comparison.

> e1966 <- clean[year == 1966,]
> e1960 <- clean[year == 1960,]
> sample2 <- merge(e1966, e1960, by = c("state"), suffixes = c("", ".last"))
> e1964 <- clean[year == 1964,]
> sample2a <- merge(e1966, e1964, by = c("state"), suffixes = c("", ".last"))
> e1962 <- clean[year == 1962,]
> sample2b <- merge(e1966, e1962, by = c("state"), suffixes = c("", ".last"))

I plot this data to show partisan swing. (Figure 1)

> postscript("oneyear.ps")
> plot.default(sample2$dem.sen.last, sample2$dem.sen, col = 2,
xlab = "Democratic Percentage in Previous Senate Election
(1960, 1962, 1964)", ylab = "Democratic Percentage in 1966",
main = "", xlim = 0:1, ylim = 0:1, axes = TRUE, xaxs = "i",
yaxs = "i", tcl = 0.25)
> points(sample2a$dem.sen, sample2a$dem.sen.last, pch = 20)
> points(sample2b$dem.sen, sample2b$dem.sen.last, pch = 20)
> abline(0,1)
> dev.off()
null device
1

The following regression generates the coefficients

for the sample pair-wise comparison.

> summary(lm(dem.sen ~ dem.sen.last + other.sen +
incum, data = sample2))
Call:

```
```

lm(formula = dem.sen ~ dem.sen.last + other.sen +
incum, data = sample2)
Residuals:

Min	1Q	Median	3Q	Max
-0.11846	-0.03886	-0.00184	0.02922	0.16221

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept)	0.33464	0.07314	4.58	0.00012 ***	
dem.sen.last	0.27384	0.13881	1.97	0.06015	.
other.sen	0.00339	0.01478	0.23	0.82043	
incum	0.08147	0.02117	3.85	0.00077 ***	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.063 on 24 degrees of freedom
Multiple R-Squared: 0.692,Adjusted R-squared: 0.654
F-statistic: }18\mathrm{ on 3 and 24 DF, p-value: 2.46e-06

These are the specifications summarized in Table 1. The functions return

data frames that allow me to easily view and manipulate the coefficients

in other statistical programs and functions. I save the data frames with

names like "test1" to correspond to "spec1"

> spec1
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA, Tb1 = NA,
beta2 = NA, Tb2 = NA, beta3 = NA, Tb3 = NA, psi = NA, Tpsi = NA,
R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last + other.sen +
incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta2[results$year == y] <- x[3]
 results$beta3[results$year == y] <- x[4]
 results$psi[results$year == y] <- x[5]
 results$Tb1[results$year == y] <- x[12]
 results$Tb2[results\$year == y] <- x[13]

```
```

 results$Tb3[results$year == y] <- x[14]
 results$Tpsi[results$year == y] <- x[15]
 results$R2[results$year == y] <- sum.obj$r.squared
 results$year.norm[results$year == y] <- y - 1917
 }
 results
 }
> test1 <- spec1(clean)
> spec2
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,
Tb1 = NA, beta2 = NA, Tb2 = NA, psi = NA, Tpsi = NA, R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last +
incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta2[results$year == y] <- x[3]
 results$psi[results$year == y] <- x[4]
 results$Tb1[results$year == y] <- x[10]
 results$Tb2[results$year == y] <- x[11]
 results$Tpsi[results$year == y] <- x[12]
 results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917
}
results
}
> test2 <- spec2(clean)
> spec3
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm= NA, beta1 = NA,
Tb1 = NA, beta3 = NA, Tb3 = NA, psi = NA, Tpsi= NA, R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + other.sen + incum,
data = new)

```
```

 sum.obj <- summary(lm.obj)
 x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta3[results$year == y] <- x[3]
 results$psi[results$year == y] <- x[4]
 results$Tb1[results$year == y] <- x[10]
 results$Tb3[results$year == y] <- x[11]
 results$Tpsi[results$year == y] <- x[12]
 results$R2[results$year == y] <- sum.obj$r.squared
 results$year.norm[results$year == y] <- y - }191
 }
 results
 }
> test3 <- spec3(clean)
> spec4
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta2 = NA,
Tb2 = NA, beta3 = NA, Tb3 = NA, psi = NA, Tpsi = NA, R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.win.last + other.sen + incum,
data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta2[results$year == y] <- x[2]
 results$beta3[results$year == y] <- x[3]
 results$psi[results$year == y] <- x[4]
 results$Tb2[results$year == y] <- x[10]
 results$Tb3[results$year == y] <- x[11]
 results$Tpsi[results$year == y] <- x[12]
 results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917
}
results
}
> test4 <- spec4(clean)
> spec5
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,
Tb1 = NA, beta2 = NA, Tb2 = NA, beta3 = NA, Tb3 = NA,
beta4 = NA, Tb4 = NA, psi = NA, Tpsi = NA, R2 = NA)

```
```

 for (y in elec) {
 this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
 new <- merge(this.elec, last.elec, by = c("state"),
 suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last + other.sen +
incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta2[results$year == y] <- x[3]
 results$beta3[results$year == y] <- x[4]
 results$beta4[results$year == y] <- x[5]
 results$psi[results$year == y] <- x[6]
 results$Tb1[results$year == y] <- x[14]
 results$Tb2[results$year == y] <- x[15]
 results$Tb3[results$year == y] <- x[16]
 results$Tb4[results$year == y] <- x[17]
 results$Tpsi[results$year == y] <- x[18]
 results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917
}
results
}
> test5 <- spec5(clean)
> spec6
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,
Tb1 = NA, beta3 = NA, Tb3 = NA, beta4 = NA, Tb4 = NA,
psi = NA, Tpsi = NA, R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + other.sen +
incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta3[results$year == y] <- x[3]
 results$beta4[results$year == y] <- x[4]
 results$psi[results$year == y] <- x[5]
 results$Tb1[results$year == y] <- x[12]
 results$Tb3[results\$year == y] <- x[13]

```
```

 results$Tb4[results$year == y] <- x[14]
 results$Tpsi[results$year == y] <- x[15]
 results$R2[results$year == y] <- sum.obj$r.squared
 results$year.norm[results$year == y] <- y - 1917
 }
 results
 }
> test5 <- spec5(clean)
> spec6
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, year.norm = NA, beta1 = NA,
Tb1 = NA, beta3 = NA, Tb3 = NA, beta4 = NA, Tb4 = NA,
psi = NA, Tpsi = NA, R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]
new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + other.sen +
incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta3[results$year == y] <- x[3]
 results$beta4[results$year == y] <- x[4]
 results$psi[results$year == y] <- x[5]
 results$Tb1[results$year == y] <- x[12]
 results$Tb3[results$year == y] <- x[13]
 results$Tb4[results$year == y] <- x[14]
 results$Tpsi[results$year == y] <- x[15]
 results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917
}
results
}
> test6 <- spec6(clean)
> spec7
function(df) {
elec <- seq(1918, 1992, by = 2)
results <- data.frame(year = elec, beta1 = NA, Tb1 = NA,
beta2 = NA, Tb2 = NA, beta4 = NA, Tb4 = NA, psi = NA,
Tpsi = NA, R2 = NA)
for (y in elec) {
this.elec <- df[df$year %in% c(y),]
 last.elec <- df[df$year %in% c(y - 6),]

```
```

 new <- merge(this.elec, last.elec, by = c("state"),
 suffixes = c("", ".last"))
lm.obj <- lm(dem.sen ~ dem.sen.last + dem.win.last +
incum.last + incum, data = new)
sum.obj <- summary(lm.obj)
x <- c(sum.obj$coefficients)
 results$beta1[results$year == y] <- x[2]
 results$beta2[results$year == y] <- x[3]
 results$beta4[results$year == y] <- x[4]
 results$psi[results$year == y] <- x[5]
 results$Tb1[results$year == y] <- x[12]
 results$Tb2[results$year == y] <- x[13]
 results$Tb4[results$year == y] <- x[14]
 results$Tpsi[results$year == y] <- x[15]
 results$R2[results$year == y] <- sum.obj$r.squared
results$year.norm[results$year == y] <- y - 1917
}
results
}
> test7 <- spec7(clean)

The following function generates the mean and 95% confidence

intervals on the vector of psi values for any given specification.

> psi.ci <- function(test) {

+ coeff <- c(summary(lm(psi ~ 1, data = test))\$coefficients)
+ a <- coeff[1]
+ b <- coeff[2]
+ c <- coeff[1] - 1.96*b
+ d <- coeff[1] + 1.96*b
+ cat("The mean, and lower and upper bounds on the 95% confidence
interval are:\n", a, c, d)
+ }

The 95% confidence intervals for psi from each specification are

summarized in Table 1.

> psi.ci(test1)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0291 0.0182 0.04
> psi.ci(test2)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0274 0.0171 0.0377

```
```

> psi.ci(test3)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0297 0.0201 0.0394
> psi.ci(test4)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0313 0.0192 0.0435
> psi.ci(test5)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0301 0.0175 0.0427
> psi.ci(test6)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0304 0.0205 0.0404
> psi.ci(test7)
The mean, and lower and upper bounds on the 95% confidence
interval are:
0.0366 0.0154 0.0579

The mean R^2 values are also summarized in Table 1.

> mean(test1$R2)
[1] 0.604
> mean(test2$R2)
[1] 0.57
> mean(test3$R2)
[1] 0.576
> mean(test4$R2)
[1] 0.458
> mean(test5$R2)
[1] 0.625
> mean(test6$R2)
[1] 0.602
> mean(test7\$R2)
[1] 0.591

The 70% figure on page 4, in the first full paragraph, is from:

> (0.0366-0.0154)/(0.0301-0.0175)

```
[1] 1.68
```


For Appendix A, this function returns the first year in the

data set:

> first.elec <- function(df) {

+ states <- c(1:6, 11:14, 21:25, 31:37, 40:49, 51:54,
56, 61:68, 71:73, 81:82)
+ results <- data.frame(state = states, first.elec = NA)
+ for (s in states){
+ x <- df[df\$state == s,]
+ y <- min(x\$year)
+ results$first.elec[results$state == s] <- y
+ }
+ results
+ }
> first.elec(clean)
state first.elec
111914
$2 \quad 2 \quad 1912$
$3 \quad 3 \quad 1916$
$4 \quad 4 \quad 1914$
$5 \quad 5 \quad 1916$
$6 \quad 6 \quad 1916$
$711 \quad 1916$
$812 \quad 1916$
9131914
10141914
$1121 \quad 1914$
$12 \quad 22 \quad 1914$
13231916
14241914
$1525 \quad 1914$
$1631 \quad 1914$
$17 \quad 32 \quad 1912$
$18 \quad 33 \quad 1912$
$19 \quad 34 \quad 1914$
$20 \quad 35 \quad 1916$
$21 \quad 36 \quad 1914$
$22 \quad 37 \quad 1914$
$2340 \quad 1922$
$2441 \quad 1914$
25421914
$2643 \quad 1916$
27441918
$2845 \quad 1950$

```
```

29	46	1960
30	47	1914
31	48	1956
32	49	1916
33	51	1914
34	52	1914
35	53	1912
36	54	1916
37	56	1916
38	61	1914
39	62	1912
40	63	1914
41	64	1912
42	65	1914
43	66	1916
44	67	1914
45	68	1916
46	71	1914
47	72	1912
48	73	1914
49	81	1960
50	82	1958

\#\# The following function counts the number of states in each

election congressional election year.

> elections <- table(clean$year, clean$state)
> check.elec <- function(tb) {

+ elec <- seq(1912, 1992, by = 2)
+ results <- data.frame(year = elec, states = NA)
+ n <- nrow(tb)
+ for (i in 1:n) {
+ s <- sum(tb[i,])
+ results[i, c("states")] <- s
+ }
+ results
+ }
> check.elec(elections)
year states
1912 7
2 1914 27
3 1916 30
4 1918 25
5 1920 29
1922 29
7 1924 28

```
```

8 1926 28
9 1928 28
101930 25
111932 29
121934 26
131936 25
141938 29
151940 27
161942 24
17 1944 29
18 1946 31
191948 27
201950 28
211952 27
22 1954 25
231956 28
241958 31
251960 29
26 1962 33
27 1964 32
281966 30
291968 32
301970 30
311972 33
321974 31
331976 30
341978 30
351980 33
36 1982 32
37 1984 31
381986 34
391988 33
401990 31
411992 33

The following graph shows that there is no trend in

psi over time.

> postscript("psitime.ps")
> plot.default(test3$year, test3$psi, type = "l", xlab = "Year", ylab = "Psi", axes = TRUE,
> abline(0,0)
> dev.off()
null device
1

```

Optional Figure. \(\psi\) over time for specification three.

\#\# The following function shows that there is no trend in \#\# psi over time.
> psi
function(test) \{
    x1 <- summary (lm(psi ~ 1, data = test))
    x2 <- summary(lm(psi ~ year.norm, data = test))
    x3 <- summary(lm(psi ~ 1, data = test[1:17,]))
    x4 <- summary (lm(psi ~ year.norm, data = test[1:17,]))
    x5 <- summary (lm(psi ~ 1, data = test[18:38,]))
    x 6 <- summary(lm(psi ~ year.norm, data \(=\) test[18:38,]))
    return(x1\$call, x1\$coefficients, x2\$call, x2\$coefficients,
x3\$call, x3\$coefficients, x4\$call, x4\$coefficients,
x5\$call, x5\$coefficients, x6\$call, x6\$coefficients)
    \}
\#\# While the intercept for psi is significant, the rate
\#\# of variation for psi against year is not. Thus, even
\#\# when I subset the data into before 1950 and 1950 and after,
\#\# I find no time-trends on psi.
```

> psi(test3)
lm(formula = psi ~ 1, data = test)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0297 0.00492 6.03 5.69e-07
lm(formula = psi ~ year.norm, data = test)
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.021830 0.009872 2.21 0.0334
year.norm 0.000207 0.000225 0.92 0.3633
lm(formula = psi ~ 1, data = test[1:17,])
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.023 0.00575 4 0.00103
lm(formula = psi ~ year.norm, data = test[1:17,])
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04206 0.010437 4.03 0.00109
year.norm -0.00112 0.000532 -2.11 0.05207
lm(formula = psi ~ 1, data = test[18:38,])
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0351 0.00752 4.68 0.000145
lm(formula = psi ~ year.norm, data = test[18:38,])
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.012333 0.03545 0.348 0.732
year.norm 0.000415 0.00063 0.659 0.518

The following function generates a pooled data set.

```
```

> pooled <- function(df) {

```
> pooled <- function(df) {
+ elec <- seq(1918, 1992, by = 2)
+ elec <- seq(1918, 1992, by = 2)
+ results <- data.frame()
+ results <- data.frame()
+ for (y in elec) {
+ for (y in elec) {
+ this.elec <- df[df$year %in% c(y),]
+ this.elec <- df[df$year %in% c(y),]
+ last.elec <- df[df$year %in% c(y - 6),]
+ last.elec <- df[df$year %in% c(y - 6),]
+ new <- merge(this.elec, last.elec, by = c("state"),
+ new <- merge(this.elec, last.elec, by = c("state"),
suffixes = c("", ".last"))
suffixes = c("", ".last"))
+ results <- rbind(new, results)
+ results <- rbind(new, results)
+ }
+ }
+ results
+ results
+ }
+ }
> data9 <- pooled(clean)
> data9 <- pooled(clean)
> all.years <- data9[c("year", "state", "dem.sen", "dem.sen.last",
> all.years <- data9[c("year", "state", "dem.sen", "dem.sen.last",
"dem.win.last", "pres", "div.gov", "other.sen", "
```

"dem.win.last", "pres", "div.gov", "other.sen", "

```
```

congress", "incum")]
> summary(all.years)

year	state	dem.sen	dem.sen.last	dem.win.last	pres
Min. :1918	Min. : 1.0	Min. $: 0.127$	Min. 00.121	Min. : -1.0000	Min. 0
1st Qu.:1938	1st Qu.:21.0	1st Qu.:0.444	1st Qu.:0.446	1st Qu.:-1.0000	1st Qu.:0
Median :1958	Median : 37.0	Median :0.504	Median :0.503	Median : 1.0000	Median :0
Mean :1957	Mean : 39.1	Mean :0.514	Mean :0.513	Mean : 0.0609	Mean
3rd Qu.:1976	3rd Qu.:62.0	3rd Qu.:0.582	3rd Qu.:0.579	3rd Qu.: 1.0000	3rd Qu.:
Max. :1992	Max. $: 82.0$	Max. :0.929	Max. 00.943	Max. : 1.0000	Max.

 div.gov other.sen congress incum
 Min. :0.00 Min. :-1.0000 Min. :-1.000 Min. :-1.0000
 1st Qu.:0.00 1st Qu.:-1.0000 1st Qu.: 0.000 1st Qu.:-1.0000
 Median :0.00 Median : 1.0000 Median : 1.000 Median : 0.0000
 Mean :0.33 Mean : 0.0455 Mean : 0.451 Mean : 0.0658
 3rd Qu.:1.00 3rd Qu.: 1.0000 3rd Qu.: 1.000 3rd Qu.: 1.0000
 Max. :1.00 Max. : 1.0000 Max. : 1.000 Max. : 1.0000
 > row.names(all.years) <- seq(nrow(all.years))

```

\section*{Appendix C: \(\mathrm{IAT}_{\mathrm{E}} \mathrm{X}\) Code}
```

Table A. Summary statistics for U.S. Senate election dataset, 1912 - 1992
(n = 1,178)}
	Democratic	Party of	Party of	
	Proportion	Winner	Other Senator	Incumbency
mean	0.520	0.085	0.097	0.075
std. deviation	0.130	0.985	0.981	0.765
median	0.508	1	1	0
minimum	0.121	-1	-1	-1
maximum	0.943	1	1	1
1st quartile	0.446	1	-1	-1
3rd quartile	0.589	1	1	1


```

\section*{References}

Gelman, A. and G. King. 1990. "Estimating Incumbency Advantge without Bias." American Journal of Political Science 34:1142-64.

Table B. Party affiliation of the senator not up for election, for the first election.
\begin{tabular}{|c|c|c|c|}
\hline State & ICPSR & Year of First Election & Party Affiliation of Non-Contested Seat \\
\hline Connecticut & 1 & 1914 & 0 \\
\hline Maine & 2 & 1912 & -1 \\
\hline Massachusetts & 3 & 1916 & 1 \\
\hline New Hampshire & 4 & 1914 & 1 \\
\hline Rhode Island & 5 & 1916 & 1 \\
\hline Vermont & 6 & 1916 & 1 \\
\hline Delaware & 11 & 1916 & 1 \\
\hline New Jersey & 12 & 1916 & 1 \\
\hline New York & 13 & 1914 & 1 \\
\hline Pennsylvania & 14 & 1914 & -1 \\
\hline Illinois & 21 & 1914 & 0 \\
\hline Indiana & 22 & 1914 & 1 \\
\hline Michigan & 23 & 1916 & 1 \\
\hline Ohio & 24 & 1914 & 1 \\
\hline Wisconsin & 25 & 1914 & 0 \\
\hline Iowa & 31 & 1914 & 0 \\
\hline Kansas & 32 & 1912 & 0 \\
\hline Minnesota & 33 & 1912 & 0 \\
\hline Missouri & 34 & 1914 & 1 \\
\hline Nebraska & 35 & 1916 & 1 \\
\hline N. Dakota & 36 & 1914 & 0 \\
\hline S. Dakota & 37 & 1914 & 0 \\
\hline Virginia & 40 & 1922 & 1 \\
\hline Alabama & 41 & 1914 & 1 \\
\hline Arkansas & 42 & 1914 & 1 \\
\hline Florida & 43 & 1916 & 1 \\
\hline Georgia & 44 & 1918 & 1 \\
\hline Louisiana & 45 & 1950 & 1 \\
\hline Mississippi & 46 & 1960 & 1 \\
\hline N. Carolina & 47 & 1914 & 1 \\
\hline S. Carolina & 48 & 1956 & 1 \\
\hline Texas & 49 & 1916 & -1 \\
\hline Kentucky & 51 & 1914 & 1 \\
\hline Maryland & 52 & 1914 & 1 \\
\hline Oklahoma & 53 & 1912 & 1 \\
\hline Tennessee & 54 & 1916 & 1 \\
\hline W. Virginia & 56 & 1916 & 1 \\
\hline Arizona & 61 & 1914 & 1 \\
\hline Colorado & 62 & 1912 & 1 \\
\hline Idaho & 63 & 1914 & 0 \\
\hline Montana & 64 & 1912 & 1 \\
\hline Nevada & 65 & 1914 & 1 \\
\hline New Mexico & 66 & 1918 & -1 \\
\hline Utah & 67 & 1914 & 0 \\
\hline Wyoming & 68 & 1916 & -1 \\
\hline California & 71 & 4914 & 0 \\
\hline Oregon & 72 & 1912 & 1 \\
\hline Washington & 73 & 1914 & 0 \\
\hline Alaska & 81 & 1960 & 1 \\
\hline Hawaii & 82 & 1958 & 1 \\
\hline
\end{tabular}```


[^0]:    ${ }^{1}$ Gelman and King actually propose $E\left(\nu_{2}\right)=\beta_{0}+\beta_{1} \nu_{1}+\beta_{2} P_{2}+\psi I_{2}$, but they define $P_{2}$ as the party of the winner in the election at time $t=1$. For clarity and consistency, I use $P_{1}$ instead.

