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ABSTRACT
The National Birth Defects Prevention Study (NBDPS) is a case-control study of birth defects conducted
across 10 U.S. states. Researchers are interested in characterizing the etiologic role of maternal diet, collected
using a food frequency questionnaire. Because diet is multidimensional, dimension reduction methods
such as cluster analysis are often used to summarize dietary patterns. In a large, heterogeneous population,
traditional clustering methods, such as latent class analysis, used to estimate dietary patterns can produce a
large number of clusters due to a variety of factors, including study size and regional diversity. These factors
result in a loss of interpretability of patterns that may differ due to minor consumption changes. Based on
adaptation of the local partition process, we propose a new method, robust profile clustering, to handle
these data complexities. Here, participants may be clustered at two levels: (1) globally, where women are
assigned to an overall population-level cluster via an overfitted finite mixture model, and (2) locally, where
regional variations in diet are accommodated via a beta-Bernoulli process dependent on subpopulation
differences. We use our method to analyze the NBDPS data, deriving prepregnancy dietary patterns for
women in the NBDPS while accounting for regional variability. Supplementary materials for this article,
including a standardized description of the materials available for reproducing the work, are available as
an online supplement.
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1. Introduction

1.1. Multivariate Categorical Dietary Data

Food frequency questionnaires (FFQ) are often used to mea-
sure an individual’s dietary intake over a period of time. The
standard FFQ queries consumption/intake levels for over 100
foods and beverages (Subar et al. 2001). Some researchers focus
on individual foods or nutrients, but foods are not consumed
in isolation, and many nutritionists argue that a more holistic
approach is needed (Motulsky 1989). When data include a large
number of exposures or, in this case, food items of an FFQ,
data reduction techniques such as factor analysis, latent class
analysis, or other clustering approaches are often used (Kant
2004; Venkaiah, Brahmam, and Vijayaraghavan 2011; Sotres-
Alvarez, Herring, and Siega-Riz 2010; Keshteli et al. 2015).

Clustering methods generally assume participants within
each cluster share dietary habits and aim to maximize differ-
ences across groups. At times, these methods may oversimplify
dietary behaviors, and it can be difficult to determine when
dimension reduction is generalizable across different popula-
tions. The generalizability issue poses a concern for large hetero-
geneous populations. Subjects from these populations may often
share a combination of behaviors that could be general to an
overall population, but also specific to a subject’s subpopulation,
defined as any group indicated by a categorical covariate (e.g.,
state residence, ethnicity, SES, etc.). For example, in the United
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States, if a subpopulation was defined by a subject’s state of
residence, the foods consumed to characterize “American” diets
would look different, due to regional differences. A healthy diet
may incorporate an increased consumption of regional foods
indigenous to a specific state (e.g., more avocados in Texas).
Reconciling these regional differences with a single overall clus-
tering method presents a loss of granularity.

On the other hand, creating separate models for each
subpopulation can greatly diminish statistical power, and can
lead to misleading characterizations of diets when generalizing
across the entire population sample. Individuals that are
classified as having a “healthy” diet in North Carolina, or a
subpopulation where poor eating behaviors are prevalent, may
be classified as having an “unhealthy” diet in Massachusetts,
where a more “health-conscious” subpopulation is prevalent.
The differences found within these regional patterns are crucial
for the improvement of national dietary recommendations that
can accommodate heterogeneity of dietary behaviors.

1.2. Standard Clustering Methods

The latent class model, introduced by Lazarsfeld and Henry
(1968), is the most common clustering method for handling
multivariate categorical response data. Because the number of
clusters is typically unknown, models with a varying number
of clusters are fit. The best number of clusters is often chosen
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via likelihood ratio tests, Bayesian information criteria, Akaike
information criteria, or the Lo–Mendell–Rubin test (Nylund,
Asparouhov, and Muthén 2007). In practice, these criteria tend
to be “greedy” and select solutions with a large number of
clusters. To avoid the challenges of a large number of clusters, in
practice researchers will often add interpretability as a criterion
for selecting the number of clusters and look for the best solution
with a “manageable” number (Ford et al. 2010; Silverwood
et al. 2011). With no separation across subpopulations, this
restriction on the number of overall classes may mask any
localized dietary behaviors that could be pronounced at a
subpopulation level.

Nonparametric Bayesian methods, for example, the Dirichlet
process (DP) or overfitted finite mixture models, allow the
number of clusters represented in a sample to grow as dimen-
sions (sample size, number of variables) increase (Figueiredo
and Jain 2002; Zhang, Ghahramani, and Yang 2004; Teh 2006;
Miller and Harrison 2018; Rousseau and Mengersen 2011). In
heterogeneous populations, a largely prevalent subpopulation
may have its behaviors reflected in one of the overall clusters,
while smaller subpopulation behaviors may still remain hidden
in one of those same clusters. Further, while flexibly convenient,
these models tend to overestimate the true number of clusters,
permitting, at times, nonexistent clusters to appear (Miller and
Harrison 2013). Outliers are often assigned to singleton clusters,
which may measure lack of fit in the model more than a new
pattern.

In multisite studies, often a hierarchical or nested approach is
used to accommodate any potential differences among subpop-
ulations. The hierarchical Dirichlet process assumes common
clusters across groups (Teh et al. 2006). Nested approaches
cluster subjects within a subpopulation and borrow information
across subpopulations that share similar behaviors (Rodriguez,
Dunson, and Gelfand 2008; Hu, Reiter, and Wang 2018). While
useful in many applications, these techniques contain draw-
backs. The number of nonempty clusters derived is highly sen-
sitive to the selection of tuning parameters or hyperparame-
ters. Often unrealistic, strong priors on these parameters are
necessary to enforce sparsity and ensure subjects aggregate to
a reasonable number of clusters, as interpretability once again
becomes an issue.

What strains these clustering methods is the assumption of
global clustering, where subjects belonging to the same cluster
will exhibit the same expected set of responses for all variables
included in the set. This is where subpopulation granularity
is lost. Differences may exist for a subset of variables within
that subpopulation. Local partition and hybrid Dirichlet pro-
cess mixture models break this global clustering assumption by
apply a two-tiered clustering scheme at a global and local level
(Dunson 2009; Petrone, Guindani, and Gelfand 2009).

The hybrid Dirichlet process mixture model makes local
cluster assignments to each individual variable and then clusters
globally based on shared similarities of the local clusters with
other subjects using a copula construction. The local clustering
is considered a smaller subset of the overall population, but it is
not specific to any identifiable subpopulation. Additionally, the
hybrid Dirichlet prior is limited to continuous data. FFQ data
are considered semiquantitative, as quantity of consumption is
collected based on choices from several standardized portion

sizes. The frequency of consumption is collected in ordinal
group levels (e.g., X times per day, daily, weekly, monthly) (Subar
et al. 2001). Given this data structure, the copula construction
used in the hybrid DP is unable to generate unique solutions to
discriminate global clusters when handling discrete data (Smith
and Khaled 2012). A hierarchical hybrid Dirichlet could be
proposed that would deal with discrete data and allow another
level in the dependence structure. Such a model has not yet been
proposed in the literature, to our knowledge.

Instead of clustering every variable individually, the local
partition model allows an entire subset of variables to be par-
titioned to a local or global clustering system. Here, subjects
cluster with other subjects who behave similarly for most or
some of the variables analyzed. It is useful in characterizing the
global cluster patterns because variables that do not provide
much information to the overall population patterns can be
assigned to a local cluster. As with the hybrid DP, the local level
is not specific to any identifiable subpopulation. Those variables
that are considered noise at the global level could be valuable
at a subpopulation level. To identify which items are important
in a general population setting and which items are important
in a subpopulation setting, a statistically principled method is
needed to identify and discriminate between the two levels of
patterns, while still preserving a level of interpretability.

We organize this article as follows. Section 2 introduces the
robust profile clustering (RPC) framework. Section 3 explores
RPC functionality and performance against other methods
using a simulation study. Section 4 presents a comprehensive
analysis of the National Birth Defects Prevention Study
(NBDPS) data and describes insights provided by the new
methodology. We conclude with a short discussion in Section 5.

2. Robust Profile Clustering

In this section, we propose a novel class of RPC processes,
which are designed to produce a robust set of “global” clusters
summarizing the overall nutritional profile of an individual.
Clustering does not follow the typical approach of restricting all
of the measurements from individual i to have the same cluster
membership. Instead, local deviations from the global profile are
allowed and explored within each identifiable subpopulation.
We define this style as robust due to the model’s ability to derive
a global cluster that is robust to individual subpopulations that
do not follow the global patterns everywhere. This robustness
prevents RPC from introducing extraneous clusters to fit small
deviations from global profiles within subpopulations.

Our data are nested within subpopulations. This allows local
deviations to have a subpopulation-specific form. Introducing
some notation, we let i = 1, . . . , n index individuals in a
study, si ∈ {1, . . . , S} index the known subpopulation (essen-
tially a categorical covariate) of individual i, and Ci index the
(unknown) global profile membership of subject i. Additionally,
each subject has a multivariate data vector, yi = (yi1, . . . , yip)′.
Individual i may not follow her global cluster allocation for all
elements of this multivariate vector but may deviate for some as
needed. We let Gij = 1 if item j is attributed to global cluster
Ci for individual i and Gij = 0 otherwise. We let Lij denote the
local cluster allocation conditionally on Gij = 0 and si = s.
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An RPC process is then induced through probability models
containing three components: (i) the global clustering, Ci, (ii)
the variable deviation indicator, Gij, and (iii) the local clustering
membership, Lij. There are a wide variety of choices that can be
used for (i)–(iii), and to put in general form we let

Pr(Ci = h) = πh,

Pr(Gij = 1|si = s) = ν
(s)
j ,

Pr(Lij = l|si = s) = λ
(s)
l .

(1)

The data yi = (yi1, . . . , yip)′ are assumed to be drawn
independently from a set of global density parameters �0·Ci,· =
{θ0jCi,·}p

j=1 or local density parameters �
(s)
1·Lij,· = {θ(s)

1jLij,·}
p
j=1.

For example, in a multivariate categorical case, we can use an
equal number of categories d for simplicity in exposition, where
θ0jCi,· = (θ0jCi,1, . . . , θ0jCi,d)

′ and θ1jLij,· = (θ
(s)
1jLij,1, . . . , θ(s)

1jLij,d)
′.

An extension to a variable number of categories is easily accom-
modated. We then let

yij ∼
{

Mult({1, . . . , d}, θ0jCi ,·) if Gij = 1
Mult({1, . . . , d}, θ(s)

1jLij,·) if Gij = 0, si = s,
(2)

where the cluster- and food item-specific probability vectors
{θ0jCi,·, θ

(s)
1jLij,·}

iid∼ Dirichlet(1, . . . , 1) a priori for j = 1, . . . , p,
Ci = 1, 2, . . ., Lij = 1, 2, . . ., s = 1, 2, . . . , S. Although yij and yij′
are conditionally independent given θ , dependence is induced
in marginalizing out the global cluster index Ci, as shown in
expression (6).

We assume binary deviation vectors, Gi· = (Gi1, . . . , Gip), for
all i ∈ (1, . . . , n), are independent and identically distributed
given si = s with deviation probability ν

(s)
j . Given the binary

structure of a variable’s deviation to one of two levels, we model
each subpopulation with a beta-Bernoulli process to exploit its
convenient conjugacy properties.

Gij ∼ Bern(ν
(s)
j ), ν

(s)
j ∼ Be(1, β(s)), β(s) ∼ Ga(a, b). (3)

The hyperparameters (a, b) control the overall weight given
to each local component (deviated food item) of its respective
subpopulation. We let a = b = 1 as a default to place equal
probability a priori on the global and local components, while
allowing substantial uncertainty.

For the global clustering process, we assume an overfitted
finite mixture model (van Havre et al. 2015), which greatly sim-
plifies computation relative to the LPP. Let K be a conservative
upper bound on the number of clusters (say, K = 50). Then we
have

Pr(Ci = h) = πh

π· = (π1, . . . , πK)′ ∼ Dir
(

1
K

, . . . ,
1
K

)
.

(4)

For the local clustering process, we use a parallel formulation,
letting

Pr(Lij = l | si = s) = λ
(s)
l

λ(s)· = (λ
(s)
1 , . . . , λ(s)

K ) ∼ Dir
(

1
K

, . . . ,
1
K

)
.

(5)

The induced subject-specific likelihood yi conditionally on
Gi· = {Gij}p

j=1, �0·Ci,· = {θ0jCi,·}p
j=1, �

(s)
1·Lij,· = {θ(s)

1jLij,·}
p
j=1, but

marginalizing out Ci and Li· = {Lij}p
j=1 is given by

f (yi|−) =
⎡
⎣ K∑

h=1
πh

p∏
j:Gij=1

d∏
r=1

θ
1(yij=r)
0jh,r

⎤
⎦ p∏

j:Gij=0[ K∑
l=1

λ
(s)
l

d∏
r=1

(θ
(s)
1jl,r)

1(yij=r)
]

. (6)

3. Simulation Study

We use this section to explore the performance of existing
methods with the newly proposed RPC via a simulation study.
We observed model performances under seven scenarios: (1)
strictly global, where data contain only true underlying global
clusters, and no local clusters, (2) strictly local, where data
contain only true underlying local clusters, but no global clus-
ters, (3) hybrid case, where each subpopulation contained an
increasing proportion of deviated variables to a local profile, (4)
null case where the data contained no true underlying clusters
at the global or local level, (5) a combination of scenarios (1)–
(3) to mimic a large, heterogeneous population as expected in
the NBDPS dietary dataset, (6) various settings violating our
Beta-Bernoulli assumption, and (7) an exploration of the model
under a continuous data setting. A total of 500 datasets were
generated for each scenario across a preidentified finite set of
subpopulations S. Each dataset described a total of p = 50
variables that each contain d = 4 categorical response variables.
Continuous variables were randomly drawn from a normal
distribution, according to its predefined cluster assignment.
Variables were probabilistically allocated to global or local levels
by prespecified fixed values of ν

(s)
j . Exact specifications for each

simulation case are detailed in Appendix A.

3.1. MCMC Computation

Discrete data were analyzed under five different models: (1)
traditional LCA model with four classes (tLCA) (Lazarsfeld
and Henry 1968), (2) Dirichlet process mixture model (DPM)
(Dunson and Xing 2009), (3) over-fitted finite mixture model
of K = 50 classes (oFMM) (Rousseau and Mengersen 2011),
(4) local partition process model (LPP2) (Dunson 2009), and
(5) the newly proposed RPC model. Continuous data were
analyzed under a sparse finite Gaussian mixture (GMM) of K =
50 classes and RPC models. While models (1)–(4) ignore any
subpopulation effect, we include them to demonstrate how the
RPC properties compare to the methods currently available.

Estimation was performed using a Gibbs sampler of 20,000
runs after a 5000 burn-in. Posterior medians of all model param-
eters were calculated from the MCMC output. To encourage
mixing, label switching moves were imposed to allow better
exploration of the parameter space. The random permutation
sampler was applied for finite mixture model cases (tLCA,
oFMM, GMM, RPC) (Frühwirth-Schnatter 2001). The DPM
and LPP2, which involve a Dirichlet process mixture model, had
two label switching moves imposed to favor swapping of both
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equal and unequal size clusters (Papaspiliopoulos and Roberts
2008).

Mixing efficiency and convergence were evaluated using
trace plots of model parameters and randomly selected
variables. Parameters were relabeled using a similarity matrix
from the MCMC output that contained the pairwise posterior
probabilities of two subjects being clustered together in a given
iteration. Hierarchical clustering was then performed on the
similarity matrix, using the complete linkage approach (Krebs
1989; Medvedovic and Sivaganesan 2002). A nonempty cluster
was identified as any cluster with a posterior probability weight
greater than 0.01.

Dirichlet hyperpriors of the finite mixture component
weights found in the tLCA, oFMM, GMM, RPC were preset to
1/Kmax, where Kmax is the preset maximum number of clusters
allowed in the model. The concentration hyperparameter
of models containing a Dirichlet process was preset to 1.
Parameters estimated from all existing methods were sampled
in accordance with their algorithms found in their respective
literature (Nylund, Asparouhov, and Muthén 2007; Dunson and
Xing 2009; Rousseau and Mengersen 2011; Dunson 2009).

In the continuous case, normal gamma priors were generated
based on the range of input data, such that the prior mean for
each cluster was drawn from a normal distribution with mean
0 and variance τ = 10. Cluster specific variance at both the
global and local level were drawn from a Gamma distribution
with shape a = 0.1 and scale b = 10.

Profile patterns from each respective model were derived
using the posterior median of cluster density parameter esti-
mates. Each cluster density contained a vector of posterior prob-
abilities of a subject responding at a given level within that
cluster. The response level containing the maximum probability
of each variable was designated as the modal cluster pattern
response. The modal cluster responses were used to identify any
potential redundant clusters present. Sensitivity was measured
as the proportion of subjects belonging to the same preassigned
cluster were assigned to the same cluster by the model. Speci-
ficity was defined as the proportion of subjects who were not
preassigned together remained not assigned together. Density
concordance was measured by comparing how well each model-
derived cluster density compared to the true cluster density. This
was calculated by calculating the mean-squared error (MSEθ )

of the true density parameters, {θ0jCi}(j=1)p , to corresponding
model cluster density parameters, {θ̂0jCi}(j=1)p . To evaluate RPCs
discriminating feature of determining if a variable is global
(ν̂(s)

j → 1) or local (ν̂(s)
j → 0), total MSE was calculated

for each dataset, such that MSEν =
∑

s
∑

j(ν̂
(s)
j −ν

(s)
j )

S·p , where ν̂
(s)
j

is the posterior median estimate of ν
(s)
j . Variables predicted as

global will have higher probabilities approaching 1 and variables
predicted as local will have lower probabilities approaching 0. A
small MSEν implies a strong discrimination of the RPC model
across all p variables.

3.2. Results

All models were run using MATLAB (version 2017a). Exami-
nation of trace plots indicated good mixing and convergence of

model parameters. The median number of nonempty clusters
was collected across all 500 simulated sets for each case. The
median summaries across all 500 simulated sets is summarized
in Table 1. The number of nonempty global clusters derived in
each model is found where K0 = ∑

k 1(π̂k > 0.01), where π̂k
is the posterior median component weight of cluster k. An issue
with redundant clustering was evident in the RPC and on occa-
sion the LPP2 and GMM model. This is a common consequence
when using sparse mixture models (Malsiner-Walli, Frühwirth-
Schnatter, and Grün 2016). These models required an additional
post-processing step to remove redundant clusters. The final set
of unique nonempty clusters can be found by subtracting the
number of redundant clusters from K0. Global/local discrimi-
nation results were illustrated in the last column, MSEν .

DPM, OFM, LPP2, and RPC models performed well under
the completely global case (1) and completely local case (2). The
true cluster modes were identified with no additional clustering.
With the exception of the RPC, all of the expected cluster pat-
terns in the model were reflected at the global level in both cases.
In the completely local (case 2) setting, patterns were masked in
the LCA model due to the forced model restriction to K = 4
classes. In both of these cases, the RPC performed well in being
able to recognize that all of the variables in the completely global
case (1) should be assigned at the global level with an overall
mean ν

(s)
j = 0.75 ± 0.001 across all variables j ∈ (1, . . . , p) and

subpopulations s ∈ (1, . . . , S). As a result, all of the patterns
in case 1 were reflected at the global level. Similarly, in the
completely local setting (case 2), the RPC was able to recognize
that all of the variables should be local with an overall mean
ν

(s)
j = 0.03 ± .0002 across all variables and subpopulations.

Consequently, the patterns in the completely local case were
reflected at the local level. With all of the variables in the global
setting (case 1) and local setting (case 2) favoring one level in
the RPC model, few if any clusters were identifiable at the non-
favored level. For example, two global profiles were derived in
the local setting (case 2). However, the posterior probability
corresponding to the modal response level of these profiles was
0.25, indicating no strong modal response for any variables or
profiles at the global level.

With no true pattern evident in the null case (4), all of
the models collapsed participants into a single cluster, with
the exception of LPP2. The LPP2 identified an overwhelming
number of small clusters (median = 47). The RPC model
indicated a strong tendency to the single global cluster with
ν

(s)
j > 0.99 across all variables and subpopulations. As a result,

at the local level no identifiable clusters were formed within each
subpopulation. These results are consistent in reflecting no true
pattern in the population set.

All of the models were able to identify the expected modes
of each global profile pattern in case (3). However, LCA, DPM,
OFM, LPP2 models had a decreased sensitivity (57%) as addi-
tional clusters were derived to accommodate the hybridization
of global and local variables. This resulted in subjects who
originally belonged to the same cluster being dispersed across
several similar, but not identical clusters. The RPC was the only
model that had a high sensitivity (99%) and specificity (99%). It
derived the true global patterns without additional clustering.
At the local level, the model’s imposed sparsity resulted in a
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Table 1. Summary of simulated cases (1)–(7) for 500, respectively, simulated datasets.

Case Model K0 (IQR) Redundant Clusters Concordance MSEθ MSEν

Global

LCA 3(0) 0 0.09 NA
DPM 3(0) 0 < 0.01 NA
OFM 3(0) 0 0.08 NA
LPP 3(0) 0 < 0.01 NA
RPC 5(0) 2 0.01 0.07

Local

LCA 4(0) 0 0.07 NA
DPM 8(0) 0 < 0.01 NA
OFM 8(0) 0 0.08 NA
LPP 7(1) 0 < 0.01 NA
RPC 2(0)∗ 0 0.01 <0.01

Hybrid

LCA 4(0) 0 0.06 NA
DPM 17(2) 0 < 0.01 NA
OFM 15(1) 0 0.08 NA
LPP 8(1) 0 0.01 NA
RPC 6(1) 3 0.01 0.03

Null

LCA 1(0) 0 NA NA
DPM 1(1) 0 NA NA
OFM 1(1) 0 NA NA
LPP 47(3) 0 NA NA
RPC 1(0) 0 NA NA

Mock NBDPS

LCA 3(1) 0 0.57 NA
DPM 18(2) 2 < 0.01 NA
OFM 17(1) 0 0.08 NA
LPP 12(1) 1 < 0.01 NA
RPC 8(1) 4 0.01 0.03

Beta-Bernoulli RPC 5(0) 2 < 0.01 0.03

Continuous

Separate: GMM 3(0) 1 < 0.01∗∗ NA
Separate: RPC 3(0) 1 < 0.01∗∗ 0.06
Partial: GMM 6(0) 4 < 0.01∗∗ NA
Partial: RPC 6(2) 4 < 0.01∗∗ 0.03

Overlap: GMM 0(0) 0 NA NA
Overlap: RPC 34(4) 10 0.06∗∗ 0.07

NOTES: K0: median number of nonempty global clusters with a weight larger than 0.01. Concordance: median mean square error of true cluster density parameters and
corresponding model cluster density parameters.
*Local profile patterns were not reflected at the global level.
**For the continuous case, concordance was only compared for variables that were preallocated global across both subpopulations.

single local cluster per subpopulation. These singleton clusters
derived reflected a modal split between the two expected local
profile modes. For example, if local variable j, had a response
level of 4 for half the subpopulation and a response level of 3 for
the remaining half of the subpopulation, the single local cluster
would reflect an approximate probability of 0.5 at response level
3 and also at response level 4.

These results were consistent in the expanded mock NBDPS
case (5). Due to subpopulations containing an increasing pro-
portion of locally allocated variables, all of the models with the
exception of RPC derived several extraneous clusters. The RPC
had only one extraneous cluster, which was due to a subpopula-
tion that reflected a completely local profile. The discrimination
feature of the RPC model performed well in both the hybrid case
(3) and mock NBDPS case (5) easily identifying which variables
should be global or local (MSEν = 0.03, Figure B.1).

The {β(s)}S
s=1 parameter in the RPC model illustrates the

weight of each subpopulation to the model’s global or localized
components. Lower values indicate a strong representation of
global components. For example, in global case (1), the β(s)

for each of the subpopulations were all less than 1. Higher
values indicate a stronger representation of local components,
as illustrated in local case (2), where β(s) = 19 for each of the
subpopulations.

Consistent with prior simulation cases, RPC was still able
to preserve a strong level of specificity (99%) and sensitivity
(99%) to the global and local profile patterns. The MSEν for each
subpopulation were consistent with RPC results of prior simu-
lation cases. This consistency implies the model’s robustness to
violations of the Beta-Bernoulli assumption.

In the continuous case (7), redundancy in cluster profiles
increased as the standard deviation increased for both RPC and
GMM. The RPC performed well in highlighting the global/local
discrimination feature with an MSEν ≤ 0.07 in all three sub-
cases. This feature led to a split in pattern identification. The
expected global profile information was consistent with the
expected global mean only when it was assigned to the global
level. Likewise, expected local information was consistent with
the expected local mean only when it was assigned to the local
level. For example, all variables assigned to global profile 1 had a
mean near 2.0, as expected. If variable 6 within subpopulation 1
was expected to deviate to the local level, the local profile densi-
ties at variable 6 reflected an expected mean of 5 for local profile
1 and −5 for local profile 2, as expected. When concordance
was compared with only variables that were global across all
subpopulations, both GLM and RPC were able to identify the
parameter values.
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4. Analysis of National Birth Defects Prevention
Study Data

4.1. Multivariate Categorical Dietary Data

The NBDPS is an ongoing multistate population-based, case-
control study of birth defects in the United States (Yoon et al.
2001). Infants were identified via birth defect surveillance in
Arkansas, California, Iowa, Massachusetts, New Jersey, New
York, Texas, Georgia, North Carolina, and Utah. We focus this
analysis on dietary habits of control participants. Participants
for this study included mothers with expected due dates from
1997 to 2009, totaling 9747 controls. Controls were defined as
any live-born infant without any birth defects and were ran-
domly selected from birth certificates or hospital records. Fol-
lowing Sotres-Alvarez et al. (2013), subjects were excluded who
had multiple births, a prior history of birth defects, preexisting
diabetes, or folate antagonist medication use from three months
before pregnancy to the end of pregnancy, and unexplained.
Mothers with daily energy intake below the 2.5th and above
the 97.5th percentiles were also excluded to prevent inclusion
of unlikely intake data. After exclusion criteria were applied, a
total of 9010 controls were included for this analysis.

Food consumption was measured in grams per day and
calculated by multiplying frequency of consumption by the
standard portion size for each food item as outlined in Sotres-
Alvarez et al. (2013). Because respondents are prone to over-
estimate or under-estimate total intake (Jønneland et al. 1991;
Haraldsdottir 1993), percentiles were computed by dividing an
individual food consumed over the total foods consumed, using
grams per day as the consumption metric. The distribution of
food items showed a spike at zero, which is well known in
the literature (Kipnis et al. 2009; Zhang et al. 2011). Keeping
with common dietary analysis practices, these percentiles were
aggregated into four relative consumption levels: no consump-
tion, low consumption (0–33% consumed), medium consump-
tion (33–66% consumed), and high consumption (66–100%
consumed). A total of p = 63 food items were included in
the study with four consumption levels (d = 4) fit using a
categorical distribution.

For our RPC model, we define θ0jk,r as the probability of a
subject having a consumption level of r from food item j, given
allocation to global dietary profile Ci = k. Similarly, we define
θ

(s)
1jl,r as the probability of a subject from subpopulation s having

a consumption level r from food item j given allocation to local
dietary cluster Lij = l.

The cluster-specific parameters were each drawn from a flat,
symmetric Dirichlet distribution, θ0jh,· = {θ0jh,1, . . . , θ0jh,d} ∼
Dird(η), θ

(s)
1jl,· = {θ(s)

1jl,1, . . . , θ(s)1jl,d} ∼ Dird(η), where η = 1.
The hyperparameters of the Beta-Bernoulli process component
of the RPC were drawn from a gamma prior, β(s) ∼ 
(1, 1). To
encourage a less informative Beta-Bernoulli process, β(s) was set
to 1 for simplicity.

4.2. MCMC Performance

Following the simulation, inference is based on an MCMC run
of 20,000 iterations, after a 5000 burn-in. Given the tendency,
acknowledged in the simulation study, of parameters gravitat-

ing to a preferred node and remaining there for subsequent
iterations in large samples, the random permutation sampler
was applied to encourage mixing (Frühwirth-Schnatter 2001).
Furthermore, the overfitted model is also prone to generating
extraneous and redundant clustering (van Havre et al. 2015).
Redundancies were removed by creating a posterior pairwise
comparison matrix based on the full MCMC output. Hierar-
chical clustering was then performed using the complete link-
age approach, restricting to the median number of nonempty
clusters larger than 5% in size (Krebs 1989; Medvedovic and
Sivaganesan 2002). This threshold was determined from the
simulation study to focus on identifying the clusters of global
interest. The trace plots of β(s) and π1:K showed a good mixing
and rapid convergence. All model parameters were estimated by
calculating the posterior median and 95% credible intervals.

4.3. NBDPS Results

4.3.1. RPC Results
The RPC model identified a total of seven nonempty global
cluster patterns. A heat map illustrating the patterns of the global
profiles is provided in Figure 1. Global profile behaviors were
described by foods most likely to have a given consumption level
within each cluster. Figure 2 illustrates the top five foods with the
highest probability of having a given consumption level for each
global profile. Foods are listed from top to bottom in order of
frequency of consumption, with the largest level of consumption
illustrated at the bottom. Global profile 1 had a high consump-
tion of meats and fatty foods (candy, chocolate, beef, chicken
starches). Global profile 2 had a high consumption of fast foods
(soda, white bread, French fries, ground beef, potato chips).
Global profile 3 had a high consumption of chicken, cheese,
and beef. Foods commonly found in a “Tex-Mex” or Latino
style diet were likely to be consumed at a high level in global
profile 4. Global profile 5 had a high consumption of “snack-
style” foods (soda, French fries, tea, potato chips) as well as a
medium consumption of pork and frankfurters. Global profile
6 had a high consumption of caffeine products (soda, coffee,
tea). Global profile 7 was the most prudent profile with highly
consumed foods including wheat bread, fruit cocktail, and low-
fat milk.

The distribution of these profiles by each subpopulation is
illustrated in Figure 3. Global profile 3 (gray) was the largest
and most prominent profile in all states except for Arkansas and
California. In Arkansas, global profile 5 was most prominent.
Texas had a strong representation of global profile 4, which had
a high consumption of foods commonly found in a “Tex-Mex”
style diet (tortillas, refried beans, salsa).

While the food patterns found at the global level were shared
among subjects from different subpopulations, unique behav-
iors were more pronounced within each state at the local level.
A subset of foods were found to deviate at the subpopulation
level for all 10 states. A food with a tendency to deviate in
favor of a subpopulation pattern was identified as ν

(s)
j < 0.50.

Eight foods were found to share a tendency to deviate in favor
of nonconsumption in all 10 states (butter, squash, beef liver,
beef tongue, coffee, tea, diet soda, folate cereal). Many of these
foods were found to have consumption levels at the global level.
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Figure 1. Heat map showing modal consumption level of RPC global profiles.
Legend provides level of consumption for corresponding color.

This implies that subjects either did consume according to their
global profile pattern, or did not consume that food at all. Four
foods had a tendency to not deviate to any of the local clus-
ters, and remain in accordance with the global profiles (pork,
French fries, potato chips, wheat bread). All other food variables
with varying consumption patterns by state, are illustrated in
Figure 4. At the local level, foods aggregated to a single cluster

(λ(s) > 0.95), indicating less variability of consumption patterns
within each subpopulation.

States with higher representation of Latino populations
(Texas and California) showed a tendency for higher consump-
tion of foods commonly found in a Latino diet (tortillas, refried
beans, salsa, avocados), whereas states such as Massachusetts,
New Jersey, and New York showed a tendency toward lower
consumption of those foods. Another highly discriminating
food was spaghetti, which was consumed at a high level for those
subjects in global profile 3. This was the most populous global
profile in North Carolina and Utah, yet subjects from those
states were likely to deviate in favor of a lower consumption
level, respectively. Similarly, subjects from Massachusetts and
New Jersey who were not allocated to that global profile (i.e.,
allocated instead to global profile 2 and global profile 5) still
favored a high consumption of spaghetti. Utah subjects had a
tendency to deviate in favor of a high consumption of child-
friendly fruits (apples, bananas, fruit cocktail) and dairy (egg,
reduced fat milk).

4.3.2. Comparisons With Other Models
We also analyzed the NBDPS data using the previous methods.
In general, these models had an exhaustive number of clusters
that shared patterns reflected in both the global and local clus-
ters of the RPC. Using the posterior median estimates, NBDPS
participants were classified into the cluster with the highest
posterior allocation probability. The mean and 95% credible
interval of these probabilities is summarized in Table 2. The
LCA-4 model had the strongest allocation probabilities, and the
DPM model had the weakest.

Despite strong allocation probabilities, overgeneralization
was a major limitation of the LCA-4 model. Over 20 foods were
identified as favoring no consumption across all four classes.
For example, pie favored no consumption for all cluster pat-
terns (Appendix C, Figure C.1). Yet, the RPC model showed
that this tendency for nonconsumption was only prominent in
California, Massachusetts, New Jersey, and Utah (Figure 4). The
remaining subpopulations favored corresponding global profile
patterns which indicated a nonconsumption in only three of
the seven profiles. Both the OFM and DPM models derived an
excessive number of clusters (KOFM = 15, KDPM = 16). In the
DPM model, only one derived cluster was larger than 5% in size.
Like the LCA-4 model, the OFM modal cluster pattern indicated
a general nonconsumption of nine foods that was not reflected
in the RPC model. For example, the consumption of yams by the
state of New York is masked in the OFM model. This consump-
tion is relevant to New York participants that belong to global
profiles 3, 6, or 7 that favor a high or low consumption of yams.
The LPP2 was the only model that allows the global clustering
assumption to be relaxed with global and local clustering. A total
of nine nonempty clusters were derived in the LPP2, but none
of the foods in the dataset favored a deviation away from the
global profile patterns (νj > 0.99 : for all j ∈ 1, . . . , p). By
allowing deviations by the known subpopulation, the RPC was
able to clearly identify and distinguish deviating behaviors from
the global profile trends.
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Figure 2. Foods most likely to be consumed at each consumption level of global profiles. Level of consumption decreases as you move from bottom to top.

Figure 3. Frequency distribution of global profiles by subpopulation (state) for the global profiles identified in the model. Global profiles are displayed in numerical order
from left to right, with corresponding colors indicated in the legend below bar plots.

5. Discussion

The RPC method provides a convenient and informative
population-based model that is able to adapt and account for
potential deviations occurring within subpopulations. It creates
a practical solution to the global clustering problem by allowing
certain variables to assume a distribution separate from their
assigned overall cluster. This separate distribution is unique
and can be shared among participants belonging to the same
subpopulation regardless of the overall cluster assigned to those
participants. A logistic regression model could be placed on
relevant probabilities as desired to include covariates.

The overfitted mixture framework of the RPC is sensitive to
the selection of Dirichlet hyperpriors. Smaller Dirichlet hyper-
prior values can slow down the rate of cluster growth (Rousseau
and Mengersen 2011). Our selection of 1

K as the hyperprior
provided a modest rate of growth for our large sample pop-
ulation size. Other more informative or even nonsymmetric
hyperpriors can be used as an alternative, as deemed appro-
priate. Additionally, the overfitted finite mixture model is still
prone to redundancies in the cluster profile patterns. This often
can require an additional step of post-processing to examine
the final profile results and remove redundant patterns as they
are expressed in the sampler. An alternative would be to use a
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Figure 4. Heat map illustrating foods with a tendency to deviate from the global profile (ν
(s)
j < 0.5), by subpopulation. Legend provides level of consumption for

corresponding color.

hierarchical hybrid Dirichlet that can handle discrete data, if a
more complex approach is desired. This extension is a different
potential direction that to our knowledge has not yet been
pursued.

Table 2. Summary comparing number of nonempty clusters and mean posterior
probability of NBDPS assigned cluster 95% credible interval of maximum posterior
probability of subject allocation to preferred cluster.

Nonempty clusters Posterior probability of assigned cluster
(K0) Mean (95% credible interval)

tLCA 4 0.999 (0.56, 1.00)
DPM 16 0.934 (0.44, 1.00)
oFMM 15 0.974 (0.49, 1.00)
LPP2 9 0.964 (0.44, 1.00)
RPC 7 0.999 (0.52, 1.00)

Nevertheless, RPC allows researchers to characterize behav-
iors attributable to a general population or isolated within a
subpopulation. In the application using NBDPS dietary data,
numerous regional food trends were identified using the RPC
model that were not apparent using other approaches.

Appendix A: Simulation Study Details

Global and local cluster patterns were generated by applying a
probability of 0.7 to the expected true response level and a probability
of 0.1 to all other response categories. Let r∗ denote the expected
response level for a given global cluster. If r∗ = 3 for variable
j = 1, then (θ011,1, . . . , θ011,d) = (0.1, 0.1, 0.7, 0.1). A table of
expected location of r∗ mode for each global cluster profile is provided
below.
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Case 1: Strictly Global

Each subject i belongs to one of S = 4 subpopulations(si ∈ 1, 2, 3, 4).
Within that subpopulation, each subject is assigned to one of 3 global
profiles (Ci ∈ 1, 2, 3). Probability of variable deviation is preset to
ν
(s)
j = 1, such that Gij = 1 for all subjects i ∈ (1, . . . , n), and all

variables j ∈ (1, . . . , p). Expected global profile pattern, defined by
modal response, is provided in Table A.1.

1Subject-level observed data was generated as follows:

Algorithm 1 Simulation case 1.
1: Generate yij|Ci, si ∼ Multinomial(θ0jCi,1, . . . , θ0jCi,d)

Case 2: Strictly Local

Each subject i belongs to one of S = 8 subpopulations (si ∈ 1, 2, . . . , 8).
Each subpopulation contains one local cluster. Probability of variable
deviation is preset to ν

(s)
j = 0, such that Gij = 0 for all subjects

i ∈ (1, . . . , n), and all variables j ∈ (1, . . . , p). Expected local profile
pattern, defined by modal response, is provided in Table A.2.

Subject-level observed data was generated as follows:

Algorithm 2 Simulation case 2.

Generate yij|Lij, si ∼ Multinomial(θ(si)
1jLij,1, . . . , θ(si)

1jLij,d)

Case 3: Hybrid

Each subject i belongs to one of S = 4 subpopulations (si ∈ 1, 2, 3, 4).
Within each subpopulation, each subject is assigned to one of two
local clusters, Lij = l ∈ (1, 2) and one of three global clusters,
Ci = k ∈ (1, 2, 3). Expected global profile patterns, defined by modal
response, are provided in Table A.1, when Gij = 1. Expected local
profile patterns, defined by modal response, are provided in Table A.2,
when Gij = 0. Probability of allocation to global or local was fixed for
all variables within a subpopulation:
Subpopulation 1: ν(1)

j = 0.25 for all j ∈ (1, . . . , p), local profiles 1 and
2 (Table A.2)
Subpopulation 2: ν(2)

j = 0.50 for all j ∈ (1, . . . , p), local profiles 3 and
4 (Table A.2)
Subpopulation 3: ν(3)

j = 0.75 for all j ∈ (1, . . . , p), local profiles 5 and
6 (Table A.2)
Subpopulation 4: ν(4)

j = 1.00 for all j ∈ (1, . . . , p), local profiles 7 and
8 (Table A.2)

Algorithm 3 Simulation case 3.

Generate Gij|si ∼ Bernoulli(ν(si)
j )

if Gij = 1 then
3: Generate yij|Ci ∼ Multinomial(θ0jCi,1, . . . , θ0jCi,d)

else if Gij = 0 then
Generate yij|Lij, si ∼ Multinomial(θ(si)

1jLij,1, . . . , θ(si)
1jLij,d)

6: end if

Case 4: Null Set

Each subject i was assigned to one of S = 4 subpopulations (si ∈
1, 2, 3, 4). Subject-level observed data was randomly assigned from a
discrete uniform distribution containing d = 4 possible response
levels.

Algorithm 4 Simulation case 4.
Generate yij ∼ Uniform(1, . . . , d)

Case 5: Mock NBDPS

Each subject i was assigned to one of S = 10 subpopulations (si ∈
1, 2, . . . , 10). Within each subpopulation, each subject is assigned to a
global profile, labelled Ci, and each subpopulation contained at least
one of 28 unique profiles containing a combination of global and
local variables. Subject-level observed data was generated as referenced.
Subpopulations 1–3, and 8 contained 1200 subjects, with 400 subjects
equally assigned to one of three global profiles. Each of these sub-
populations contained 2 local profiles with subjects evenly assigned to
each profile (600 subjects per local profile for subpopulations 1–3; 400
subjects per local profile for subpopulation 8). Subpopulations 4–6, and
9 contained 1200 subjects with 400 subjects equally assigned to one of
the three global profiles (400 subjects per global profile). Subpopulation
10 contained 1600 subjects, where 400 subjects contained one global
profile and no local profile and 1200 subjects with one local profile and
no global profile. Expected global profile patterns, defined by modal
response, are provided in Table A.1, when Gij = 0. Expected local
profile patterns, defined by modal response, are provided in Table A.3,
when Gij = 1.

Algorithm 5 Simulation case 5.
Subpopulation 1: Generate yij as in Algorithm 3, where
ν

(s)
j = 0.75.

Subpopulation 2: Generate yij as in Algorithm 3, where
ν

(s)
j = 0.50.

Subpopulation 3: Generate yij as in Algorithm 3, where
ν

(s)
j = 0.25.

Subpopulation 4–6: Generate yij as in Algorithm 1.
5: Subpopulation 7: Generate yij as in Algorithm 2.

Subpopulation 8: Generate yij|Ci = 1 as in Algorithm 2 and
yij|Ci = 2, 3 as in Algorithm 3, where ν

(s)
j = 0.9.

Subpopulation 9: Generate yij as in Algorithm 3, where
ν

(s)
j = 0.1.

Subpopulation 10: Generate yij|Ci = 1 as in Algorithm 1
and yij|Ci = 2 as in Algorithm 2.

Case 6: Violations of Beta-Bernoulli assumption

Each subject i belongs to one of S = 4 subpopulations (si ∈ 1, 2, 3, 4).
Within each subpopulation, each subject is assigned to one of two local
clusters, Lij = l ∈ (1, 2) and one of three global clusters, Ci = k ∈
(1, 2, 3). Expected global profile patterns, defined by modal response,
are provided in Table A.1, when Gij = 1. Expected local profile
patterns, defined by modal response, are designed as in Case 3, with
the 8 local profile patterns distributed across the four subpopulations.
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Table A.1. Location of mode for each respective global cluster where maximal probability (θ0jCi ,r∗ = 0.7).

Global Global Global j Global Global Global
j 1 2 3 1 2 3

1 3 2 1 26 1 4 2
2 3 2 1 27 1 4 2
3 3 2 1 28 1 4 2
4 3 2 1 29 1 4 2
5 3 2 1 30 1 4 2
6 3 2 1 31 1 4 3
7 3 2 1 32 1 4 3
8 3 2 1 33 1 4 3
9 3 2 1 34 1 4 3
10 3 2 1 35 1 4 3
11 3 4 2 36 1 4 3
12 3 4 2 37 1 4 3
13 3 4 2 38 1 4 3
14 3 4 2 39 1 4 3
15 3 4 2 40 1 4 3
16 3 4 2 41 1 4 3
17 3 4 2 42 1 4 3
18 3 4 2 43 1 4 3
19 3 4 2 44 1 4 3
20 3 4 2 45 1 4 3
21 3 4 2 46 1 4 3
22 3 4 2 47 1 4 3
23 3 4 2 48 1 4 3
24 3 4 2 49 1 4 3
25 3 4 2 50 1 4 3

Probability of deviation to global or local level for all variables within a
subpopulation was drawn from a different subpopulation:

Algorithm 6 Simulation case 6.
if si = 1 then

Randomly draw ν
(1)
j ∼ Beta(2, 1) for all j ∈ (1, . . . , p)

else if si = 2 then
Randomly draw ν

(2)
j ∼ U(0, 1) for all j ∈ (1, . . . , p)

else if si = 3 then
6: Randomly draw ν

(3)
j ∼ P(N(0, 1)) for all j ∈ (1, . . . , p)

else if si = 4 then
Randomly draw ν

(3)
j from a standard Cauchy distribution

for all j ∈ (1, . . . , p)

end if
if Gij = 1 then

Generate yij|Ci ∼ Multinomial(θ0jCi,1, . . . , θ0jCi,d)
12: else if Gij = 0 then

Generate yij|Lij, si ∼ Multinomial(θ(si)
1jLij,1, . . . , θ(si)

1jLij,d)

end if

Case 7: Continuous Data

Each subject i belongs to one of S = 2 subpopulations (si ∈ 1, 2)

of size 1500 subjects each, describing p = 30 variables. Within each
subpopulation, each subject is assigned to one of two local clusters,
Lij = l ∈ (1, 2) and one of two global clusters, Ci = k ∈ (1, 2). Allo-
cation to global or local level for all variables within a subpopulation
was preset such that following variables were allocated from the local
density from subpopulation 1: vars (6, 7, 16, 17, 26, 27); subpopulation

2: vars (5, 8, 15, 18, 25, 28). Subject-level observed data for global and
local profiles are drawn from a normal distribution with respective
means, μ0, μ(s)

1 . Standard deviations remained uniform depending on
the case: (a) σ = 0.1, (b) σ = 1.0, (c) σ = 3.0.

Algorithm 7 Simulation case 7.

Generate Gij|si ∼ Bernoulli(ν(si)
j )

if Gij = 1 then
Generate yij|Ci ∼ N(μ0, σ)

else if Gij = 0 then
Generate yij|Lij, si ∼ N(μ

(s)
1 , σ)

end if

Appendix B: Supporting Figures From Mock NBDPS
Simulation Study (Section 3.2)

Using one of the replicates from the mock NBDPS simulations (Sec-
tion 3.2), Figure B.1 provides a comparative illustration of variables
that were identified as deviating from the global cluster pattern by
each subpopulation. The figure on the left shows the variables that
deviated as a result of the RPC model and the figure on the right
illustrates the true deviated variables. Discrepancies in the predicted
and actual results were found in subpopulation 7. This subpopulation
contained patterns where all variables deviated from the global pattern
and contained two unique local clusters. The RPC model misspecified
the completely local pattern as a global pattern for subpopulation 7.
Most of the deviation was identified as deviating to local for subpopu-
lation 10. However, some locally allocated variables overlapped with the
globally expected value and were therefore considered global in those
cases.
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Table A.2. Location of maximal probability for each variable in respective local cluster where maximal probability (θ(s)
1jLij ,r∗ = 0.7).

Local Local Local Local Local Local Local Local
j 1 2 3 4 5 6 7 8

1 1 1 2 2 3 3 4 4
2 1 2 2 4 3 1 4 3
3 1 3 2 1 3 4 4 2
4 1 4 2 3 3 2 4 1
5 1 1 2 2 3 3 4 4
6 1 2 2 4 3 1 4 3
7 1 3 2 1 3 4 4 2
8 1 4 2 3 3 2 4 1
9 1 1 2 2 3 3 4 4
10 1 2 2 4 3 1 4 3
11 1 3 2 1 3 4 4 2
12 1 4 2 3 3 2 4 1
13 1 1 2 2 3 3 4 4
14 1 2 2 4 3 1 4 3
15 1 3 2 1 3 4 4 2
16 1 4 2 3 3 2 4 1
17 1 1 2 2 3 3 4 4
18 1 2 2 4 3 1 4 3
19 1 3 2 1 3 4 4 2
20 1 4 2 3 3 2 4 1
21 1 1 2 2 3 3 4 4
22 1 2 2 4 3 1 4 3
23 1 3 2 1 3 4 4 2
24 1 4 2 3 3 2 4 1
25 1 1 2 2 3 3 4 4
26 1 2 2 4 3 1 4 3
27 1 3 2 1 3 4 4 2
28 1 4 2 3 3 2 4 1
29 1 1 2 2 3 3 4 4
30 1 2 2 4 3 1 4 3
31 1 3 2 1 3 4 4 2
32 1 4 2 3 3 2 4 1
33 1 1 2 2 3 4 4
34 1 2 2 4 3 1 4 3
35 1 3 2 1 3 4 4 2
36 1 4 2 3 3 2 4 1
37 1 1 2 2 3 3 4 4
38 1 2 2 4 3 1 4 3
39 1 3 2 1 3 4 4 2
40 1 4 2 3 3 2 4 1
41 1 1 2 2 3 3 4 4
42 1 2 2 4 3 1 4 3
43 1 3 2 1 3 4 4 2
44 1 4 2 3 3 2 4 1
45 1 1 2 2 3 3 4 4
46 1 2 2 4 3 1 4 3
47 1 3 2 1 3 4 4 2
48 1 4 2 3 3 2 4 1
49 1 1 2 2 3 3 4 4
50 1 1 2 2 3 3 4 4
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Table A.3. Case 5: Location of maximal probability for each variable in respective local cluster, where (θ
(s)
1jLij ,r∗ = 0.7).

Subpop 1 Subpop 2 Subpop 3 Subpop 7 Subpop 8 Subpop 9 Subpop 10

j Local 1 Local 2 Local 1 Local 2 Local 1 Local 2 Local 1 Local 2 Local 1 Local 2 Local 1 Local 2 Local 1

1 2 2 3 2 4 2 2 2 4
2 1 4 1 4 2 2 1 4 3 1 4
3 4 3 1 3 1 2 3
4 3 3 3 1 2 1 1 1 3
5 1 3 4 2 4 2 4
6 2 2 3 2 3 4 2 1 2
7 3 3 3 1 3
8 3 2 2 1 3 4 2 1 2
9 3 3 1 1 1 1 2 3 1 4 2
10 4 2 4 4 1 1 3 4 2
11 2 2 4 4 2 3 3
12 4 4 4 3 4 3 1 4 3
13 2 1 4 1 4 2 2 1 4
14 3 2 3 3 1 1 2 4 2 3 4
15 3 1 4 3 4 3 3 2 3
16 1 1 1 3 2 3 2 2 2
17 1 1 2 2 3 4 1 3 3
18 4 3 4 1 1 1 1 4 2
19 2 4 4 3 4 4 4 1 4
20 4 1 1 1 3 3 2
21 1 1 1 1 3 1 2
22 3 4 4 4 4 3 3 3 2
23 1 4 2 4 1 3 3 1 3 3 2
24 3 1 2 3 4 2 4 4 3
25 2 2 1 2 3 3 4 4 3
26 3 4 2 1 3 1 3 3 4
27 1 4 2 4 3 3 2
28 3 3 2 3 4 1 3
29 3 4 3 4 4 1 2 2 3
30 4 3 4 1 1 1 2 4 2
31 4 4 4 1 2 1 4
32 4 1 1 2 2 2 2 3 1
33 2 2 3 2 2 1 4 2 4
34 4 1 4 1 1 1 1
35 4 4 2 1 1 1 4 4 2 4 4
36 1 2 3 2 2 1 1 2 4
37 1 1 1 2 1 2 3 4 2
38 4 4 2 2 4 2 2
39 2 1 1 4 4 2 1 2 2
40 2 1 2 3 4 2 4
41 2 4 2 4 3 3 3 1 1
42 3 2 3 1 4 1 3
43 1 2 4 2 3 1 4 2 3 1 3
44 1 4 3 3 3 1 1
45 3 4 4 4 4
46 2 2 3 4 3 1 1 2 2
47 1 3 3 4 3 2 2
48 4 1 3 4 2 4 2
49 1 3 1 1 3 2 3 1 3
50 2 3 1 4 4 4 1 3 4

Table A.4. Simulation set-up for each subcase for continuous set from a N(μ, σ)

distribution.

Global density Local density
Case N(μ0, σ) N(μ

(s)
1 , σ)

7a: Completely separate N(−9, 0.1) 1: N(5, 0.1) N(9, 0.1)

N(2, 0.1) 2: N(−5, 0.1) N(−2, 0.1)

7b: Partially separate N(−9, 1) 1: N(5, 1) N(9, 1)

2: N(2, 1) N(−5, 1) N(−2, 1)

7c: Complete overlap N(−9, 3) 1: N(5, 3) N(9, 3)

2: N(2, 3) N(−5, 3) N(−2, 3)

NOTES: Each dataset contains 2 subpopulations with p = 30 variables. Each
subpopulation contains information from 2 global and 2 local clusters.
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Figure B.1. Simulation example comparing probability of a variable being allocated to a global cluster set (gray,Gij = 1) and local cluster set (white, Gij = 0). Side-by-side
figure compares RPC-derived results (left) with true deviation results (right).
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Appendix C: Supporting Figure for NBDPS Previous Methods (Section 4.3.2)

Figure C.1. Heat map showing modal consumption level of each of the nonempty clusters derived from the LCA-4, OFM-15, DPM-16, LPP2-10. Legend provides level of
consumption for corresponding color.
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Supplementary Materials

An example dataset to illustrate the RPC method all source code, data, and
expected output are publicly available at https://github.com/bjks10/RPC.

README file: Text file overviewing MATLAB functions and files to per-
form RPC program.

RPC source code: MATLAB code to perform the RPC method and sup-
porting files.

Simulated dataset: Simulated example dataset to illustrate RPC method.
Expected Output: Saved output results from running RPC example set.
Posterior Computation: MCMC Gibbs sampler for posterior computa-

tion of RPC
1. Update the global component indicators (Gij | si = s) ∼

Bern(pij), where

pij = ν
(s)
j

∏d
r=1 �

1(yij=r)
0jCi ,r

ν
(s)
j

∏d
r=1 �

1(yij=r)
0jCi ,r + (1 − ν

(s)
j )

∏d
r=1(�

(s)
1jLij ,r)

1(yij=r)

for each subject i ∈ (1, . . . , n) with respective subpopulation
index s.

2. Update global cluster index Ci, i = 1, . . . , n from its multinomial
distribution where

Pr(Ci = h) =
πh

∏
j:Gij=1

∏d
r=1 �

1(yij=r)
0jh,r∑K

l=1 πl
∏

j:Gij=1
∏d

r=1 �
1(yij=r)
0jl,r

.

3. Update local cluster index Lij for all i : si = s and j =
1, . . . , p, repeating for each s, from its multinomial distribution
conditional on si = s where

Pr(Lij = h) =
λ

(s)
h

∏d
r=1

(
�

(s)
1jh,r

)1(yij=r,Gij=0)

∑K
l=1 λ

(s)
l

∏d
r=1

(
�

(s)
1jl,r

)1(yij=r,Gij=0)
.

4. Update the global clustering weights

π = (π1, . . . , πK)

∼ Dir

(
1
K

+
n∑

i=1
1(Ci = 1), . . . ,

1
K

+
n∑

i=1
1(Ci = K)

)
.

5. Update the local clustering weights in subpopulation s,

λ(s) =
(
λ

(s)
1 , . . . , λ(s)

K

)

∼ Dir

⎛
⎝ 1

K
+

∑
i:si=s

p∑
j=1

1(Lij = 1), . . . ,
1
K

+
∑
i:si=s

p∑
j=1

1(Lij = K)

⎞
⎠ .

6. Update the multinomial parameters, where η is a flat, symmetric
Dirichlet hyperparameter preset at 1

θ0jh,· ∼ Dir

⎛
⎝η +

∑
i:Gij=1,Ci=h

1(yij = 1), . . . , η

+
∑

i:Gij=1,Ci=h
1(yij = d)

⎞
⎠

θ
(s)
1jh,· ∼ Dir

⎛
⎝η +

∑
i:Gij=0,Lij=h,si=s

1(yij = 1), . . . , η

+
∑

i:Gij=0,Lij=h,si=s
1(yij = d)

⎞
⎠

7. Update ν
(s)
j ∼ Be(1 + ∑

i:si=s Gij, β(s) + ∑
i:si=s(1 − Gij)).

8. Update Beta-Bernoulli hyperparameter: β(s) ∼ Ga(a + p, b −∑p
j=1 log(1 − ν

(s)
j )).
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