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Abstract

This paper presents the MATLAB package DeCo (density combination) which is based on the
paper by Billio, Casarin, Ravazzolo, and van Dijk (2013) where a constructive Bayesian approach
is presented for combining predictive densities originating from different models or other sources
of information. The combination weights are time-varying and may depend on past predictive
forecasting performances and other learning mechanisms. The core algorithm is the function
DeCo which applies banks of parallel Sequential Monte Carlo algorithms to filter the time-varying
combination weights. The DeCo procedure has been implemented both for standard CPU com-
puting and for graphical process unit (GPU) parallel computing. For the GPU implementation we
use the MATLAB parallel computing toolbox and show how to use general purposes GPU com-
puting almost effortless. This GPU implementation comes with a speed up of the execution time
up to seventy times compared to a standard CPU MATLAB implementation on a multicore CPU.
We show the use of the package and the computational gain of the GPU version, through some
simulation experiments and empirical applications.
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2 DeCo: A MATLAB Toolbox for Density Combination

1. Introduction

Combining forecasts from different statistical models or other sources of information is a crucial
issue in many different fields of science. Several papers have been proposed to handle this issue with
Bates and Granger (1969) as one of the first attempt in this field. Initially the focus was on defining
and estimating combination weights for point forecasting. For instance, Granger and Ramanathan
(1984) propose to combine forecasts with unrestricted least squares regression coefficients as weights.
Terui and van Dijk (2002) generalize least squares weights by specifying the weights in the dynamic
forecast combination as a state space model with time-varying weights that are assumed to follow a
random walk process. Recently, research interest has shifted to the construction of combinations of
predictive densities (and not point forecasts) as well as to allow for model set incompleteness (the true
model may not be included in the set of models for prediction) and learning. Further, different model
evaluation criteria are used. Hall and Mitchell (2007) and Geweke and Amisano (2010) propose to
use combination schemes based on Kullback-Leibler score; Gneiting and Raftery (2007) recommend
strictly proper scoring rules, such as the Cumulative Rank Probability Score, in particular, if the focus
is on some particular area, such as extreme tails, of the distribution. Billio et al. (2013) (hereby
BCRVD (2013)) provide a general Bayesian distributional state space representation of predictive
densities and specify combination schemes that allow for an incomplete set of models and different
learning mechanisms and scoring rules.

The design of algorithms for a numerically efficient combination remains a challenging issue (e.g., see
Gneiting and Raftery 2007). BCRVD (2013) propose a combination algorithm based on Sequential
Monte Carlo filtering. The proposed algorithm makes use of a random grid from the set of predictive
densities and runs a particle filter at each point of the grid. The procedure is computational intensive,
when the number of models to combine increases. A contribution of this paper is to present a MAT-
LAB (see The MathWorks, Inc. (2011)) package DeCo (Density Combination) for the combination of
predictive densities, and a simple GUI (graphical user interface) for the use of this package.

This paper provides, through the DeCo package, an efficient implementation of BCRVD (2013) al-
gorithm based on CPU and GPU parallel computing. We make use of recent increases in computing
power and recent advances in parallel programming techniques. The focus of the microprocessor in-
dustry, mainly driven by Intel and AMD, has shifted from maximizing the performance of a single core
to integrating multiple cores in one chip, see Sutter (2005) and Sutter (2011). Contemporaneously,
the needs of the video game industry, requiring increasing computational performance, boosted the
development of the Graphics Processing Unit (GPU), which enabled massively parallel computation.

In the present paper, we follow the recent trend of using GPUs for general, non-graphics, applications
(prominently featuring those in scientific computing) the so-called general-purpose computing on
graphics processing unit (GPGPU). The GPGPU has been applied successfully in different fields
such as astrophysics, biology, engineering, and finance, where quantitative analysts started using this
technology well ahead use by academic economists, see Morozov and Mathur (2011) for a literature
review.

To date, the adoption of GPU computing technology in economics and econometrics has been rel-
atively slow compared to other fields. There are a few papers that deal with this interesting topic,
see Suchard, Holmes, and West (2010), Morozov and Mathur (2011), Aldrich, Fernandez-Villaverde,
Gallant, and Rubio Ramirez (2011), Geweke and Durham (2012), Dziubinski and Grassi (2013) and
Creel, Mandal, and Zubair (2012). This is odd given the fact that parallel computing in economics
has a long history. An early attempt to use parallel computation for Monte Carlo simulation is Chong
and Hendry (1986), while Swann (2002) develops parallel implementation of maximum likelihood



Journal of Statistical Software

Advantages Disadvantages
CUDA Free Vendor Lock-in
OpenCL  Free Difficult to program
Heterogeneous
Thrust Free Vendor Lock-in
Easy to program
C++ AMP  Open Standard Currently only Windows implementations exist
Heterogeneous

Free (Express Edition)
Easy to program

Table 1: Comparison of different currently available GPGPU approaches.

estimation. Creel and Goffe (2008) discuss a number of economic and econometric problems where
parallel computing can be applied. The low diffusion of this technology in economics and economet-
rics, according to Creel (2005), is mainly due to two issues, which are the high cost of the hardware
as parallel CPU architectures and to the steep learning curve of dedicated programming languages as
CUDA (Compute Unified Device Architecture, see Nvidia Corporation (2010)), OpenCL (Khronos
OpenCL Working Group (2009)), Thrust (Hoberock and Bell (2011)) and C++ AMP (C++ Accel-
erated Massive Parallelism, see Gregory and Miller (2012)). Table 1 compares different currently
available GPGPU approaches. The recent increase of attention to parallel computing is motivated
by the fact that the hardware costs issue has been solved by the introduction of modern GPUs with
relatively low cost. Nevertheless, the second issue remains still open. For example, Lee, Christopher,
Giles, Doucet, and Holmes (2010) report that a programmer proficient in C (Press, Teukolsky, Vetter-
ling, and Flannery (1992)) or C++ (Stroustrup (2000)), a programming skill that can take some times
to be learned, should be able to code effectively in CUDA within a few weeks.

We aim to contribute to this stream of literature by showing that GPU computing can be carried out
almost without any extra effort using the parallel toolbox of MATLAB (available in the version 2012b
and following releases, see The MathWorks, Inc. (2011)) and a suitable approach to MATLAB coding
of the algorithms. The MATLAB environment allows easy use of GPU programming without learning
CUDA. We emphasize that this paper is not intended to compare CPU and GPU computing. In fact, we
propose the combination algorithm for both standard parallel CPU and for parallel GPU computation.
Our simulation and empirical exercises show that DeCo GPU version is faster than parallel multi-core
CPU version from 3 to 10 times, similar to recommendations in Brodtkorb, Hagen, and Saetra (2013),
and than standard sequential CPU version up to 70 times.

The structure of the paper is as follows. Section 2 introduces the principles of density forecast combi-
nations with time-varying weights and parallel sequential Monte Carlo algorithms. Section 3 presents
a parallel sequential Monte Carlo algorithm for density combinations. It also provides background
material on GPU computing in MATLAB. Sections 4 and 5 present simulation comparisons between
GPU and CPU. Section 6 reports the results for the macroeconomic empirical application. Section 7
concludes. Appendix A describes the structure of the algorithm and Appendix B shows the package
graphical interface.

2. Time-varying combinations of predictive densities
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2.1. A combination scheme

BCRVD (2013) introduces a general density combination scheme, which allows for time-varying
weights; model set incompleteness (meaning the true model might not be in the model set); combina-
tion weight uncertainty and learning. The authors give a general distributional representation of the
combination, provide an effective algorithm for the sequential estimation of the weights and discuss
some alternative specifications of the combination and of weight dynamics. In the package, and in
the simulation and empirical exercises presented in this paper, we apply for convenience the Gaussian
combination scheme with logistic weights applied by BCRVD (2013).

Let y; € Y C RE be the L-vector of observable variables at time ¢ and y; = (Y14 V) €V C

RXL, with element 31 = (G 4, -- -, Uk)’ € Y C R the typical one-step ahead predictor for y; for
the k-th model, k = 1, ..., K, in the pool. The combination scheme is specified as:
- _1 1 - _ -
Wi 30) o< 51 b exp { = (= Wig)' 5 (v - Wi |
t=1,...,T, where W; = (w},...,wF) is a weight matrix, with w! = (wllyt, e ,leL’t)’ as the

[-th row vector containing the combination weights for the K I elements of y; and for the prediction
of Yt

The dynamics of the combination weights wﬁl sh=1,...,KLis
!
exp{x
wh, = KL{’”}Z withh = 1,..., KL
Zj:1 eXp{ﬁUj,t}
where

1
plalxe_1) o [A]} exp {2 (0 —x01) A (0 xto}

with x; = vec(X;) € REL® where X; = (x},...,xF). Alearning mechanism can also be added to
the weight dynamics, resulting in:

- 1 1 _
p(xt’Xt—la Yi—rit—1, Yt—T:t—l) X \A’ 2 exp {—2 (Xt - Nt)/ AT (Xt - ,Ut)}

where p, = x;—1 — Aey and

elK(l—1)+k,t =(1-X) Z XTLf (yi—ﬂgi:,t—i) )
i=1

k=1,...,K,l=1,..., L, with X\ adiscount factor and 7 the number of previous observations used
in the learning. We assume f() is a learning strategy. Note that DeCo package relies on a general
algorithm which can account for different scoring rules, such as the Kullback-Leibler score (Hall
and Mitchell (2007) and Geweke and Amisano (2010)) and the Cumulative Rank Probability Score
(Gneiting and Raftery (2007)).

The proposed state space representation of the combination scheme provides a forecast density for the
observable variables, conditional on the predictors and on the combination weights. Moreover, the
representation is quite general, allowing for nonlinear and non-Gaussian combination models. We use
sequential Monte Carlo algorithms, also known as particle filters, to estimate sequentially over time
the optimal combination weights and the predictive density.
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The steps of the density combination algorithms are sketched in the rest of this section. Let us denote
with vi.; = (vy,..., V) acollection of vectors v; from 1,. .., t. Let w, = vec(W;) be the vector of
model weights associated with y; and 8 € © the parameter vector of the combination model. Define
the augmented state vector z; = (wy, 0;) € Z and the augmented state space Z = X x O where
0. = 0, Vt. The distributional state space form of the forecast model is

yt ~ p(yelze, yt) (measurement density) (1)
z¢ ~ p(z¢|ze—1,yY14-1,¥1:4—1) (transition density) 2)
zg ~ p(zo) (initial density) 3)

The state predictive and filtering densities conditional on the predictive variables y.; are

P(Zer1|y1:6,Y1:6) = /p(ZtJrl’ZtaY1:tayl:t)p(ztb’l:tayl:t)dzt 4)
z

- P(Yt+1|2Zt 41, Yi+1)P(Ze4 1]y 10, Y1
P(Zer1|y1e41, Y1) = (Yerr|zes1, Fer 1)l fa Yie, Y1) &)
p(}’t+1b’1:t7}’1:t)

respectively, which represent the optimal nonlinear filter (see Doucet, Freitas, and Gordon (2001)).
The marginal predictive density of the observable variables is then

P(Yi+1]y1:e) Z/yp(yztﬂ\yhu5’t+1)p(5’t+1\Y1:t)d5’t+1

where p(yi+1|y1:t, Yi+1) is defined as

/ tp(}’tﬂ |Zt41, Yi4+1)P(Zt+1]Y1:4, Y1) P(F 1:4 [Y1:4-1)dZe 1Y 14
ZxY

and represents the conditional predictive density of the observable given the past values of the observ-
able and of the predictors.

2.2. A combination algorithm

The analytical solution of the optimal filter for non-linear state space models is generally not known.
Approximate solutions are needed. We apply a numerical approximation method, that converges
to the optimal filter in Hilbert metric, in the total variation norm and in a weaker distance suitable
for random probability distributions (e.g., see Legland and Oudjane (2004)). More specifically we
consider a sequential Monte Carlo (SMC) approach to filtering. See Doucet et al. (2001) for an
introduction to SMC and Creal (2009) for a recent survey on SMC in economics. We propose to use
banks of SMC filters, where each filter, is conditioned on a sequence of realizations of the predictor
vector y;. The resulting algorithm for the sequential combination of densities is defined through the
following steps.

Step 0

Initialize independent particle sets Eé = {zé’j , wé’j N J =1,..., M. Each particle set Eé contains
N iid. random variables z;’ with random weights wg”’. Initialize a random grid over the set of
predictors, by generating i.i.d. samples y, j = 1,..., M, from p(y1|yo). We use the sample of

observations yj to initialize the individual predictors.
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Step 1

At the iteration ¢+ 1 of the combination algorithm, we approximate the predictive density p(y¢+1|y1:t)

with the discrete probability
M

Py (Fit1ly1e) = Z:l 5yg+1(5’t+1)
J:
where y{ 413 =1,...,M, are i.i.d. samples from the predictive densities and J,(y) denotes the

Dirac mass centered at . This approximation is also motivated by the forecasting practice (see Jore,
Mitchell, and Vahey (2010)). The predictions usually come, from different models or sources, in form
of discrete densities. In some cases, this is the result of a collection of point forecasts from many
subjects, such as surveys forecasts. In other cases the discrete predictive is a result of a Monte Carlo
approximation of the predictive density (e.g., importance sampling or Markov chain Monte Carlo
approximation of the model predictive density).

Step 2
We assume an independent sequence of particle sets E{ = {zlljt, wi’j N, j=1,...,M,is available
at time ¢ 4 1 and that each particle set provides the approximation

N
PN (Zely e, Y1) = Z wy” 0,13 (%) (6)
i—1

of the filtering density, p(z¢|y1., 5’{;,5), conditional on the j-th predictor realization, y{:t. Then M
independent SMC algorithms are used to find a new sequence of M particle sets, which include the
information available from the new observation and the new predictors. Each SMC algorithm iterates,
for j =1,..., M, the following steps.

Step 2.a

The basic SMC algorithm uses the particle set to approximate the predictive density with an empirical
density. More specifically, the predictive density of the combination weights and parameter, z; 1,
conditional on jr{:t and y1.; is approximated as follows

N
PN (e |yis 910) = Y Pz |z, yie 91.)wr? 0,15 (2t) (M
i=1
For the applications in the present paper we use a regularized version of the SMC procedure given
above (e.g., see Liu and West (2001), Musso, Oudjane, and Legland (2001) and Casarin and Marin
(2009)).

Step 2.b
We update the state predictive density by using the information coming from y{ 41 and y¢41, thatis
. N ..
PN (Bt |y, Y1gg1) = Z')/Zilfsziﬁl(zt-i-l) ®)
i=1

where ;7| o wi?p(ye1lzi,, ¥1,1) is a set of normalized weights.
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Step 2.c

The hidden state predictive density can be used to approximate the observable predictive density as
follows

PN (Verlyin ¥l ) = ’YZiﬁ15y?+jl (Ye+1) ©)
=1

where yt’_H has been simulated from the combination model p(y+1 \zt T Yy +1) independently for
1=1,...,N.

Step 2.d

The systematic resampling of the particles introduces extra Monte Carlo variations, see Liu and Chen
(1998). This can be reduced be doing resampling only when the effective sample size (ESS) is below
a given threshold. The ESS is defined as

N

N N
1+ NZ (7?11 - N~! Z'YZL) / (Z 7t+1>
i—1 i=1

and measures the overall efﬁ01ency of an 1mp0rtance sampling algorithm. At the ¢ + 1-th iteration if

ESSt+1 < K, simulate = g2 = {ztﬁ,wtﬁl N, from {z,;7,,7,;7,}}*; (e.g., multinomial resampling)

ESS] =

and set wt +1 =1/N. We denote with k; the index of the ¢-th re-sampled particle in the original set
St IfESSt+1 > rset =y, = {Zt+1th+1}

Step 3

At the last step, obtain the following empirical predictive density

PN (Yir1|yie) = MN;;% o yid, (yt+1) (10)

3. Parallel SMC for density combination: DeCo

MATLAB is a popular software in the economics and econometrics community (e.g., see LeSage
(1998)), which has recently introduced the support to GPU computing in its parallel computing tool-
box. This allows to use raw CUDA code within a MATLAB program as well as already build functions
that are directly executed on the GPU. Using the build-in functions we show that GPGPU can be al-
most effortless where the only knowledge required is a decent programming skill in MATLAB. With
a little effort we provide GPU implementation of the methodology recently proposed by BCRVD
(2013). This implementation comes with a speed up of the execution time up to hundred of times
compared to a multicore CPU with a standard MATLAB code.

3.1. GPU computing in MATLAB

There is little difference between the CPU and GPU MATLAB code: Listings 1 and 2 report the same
program which generates and inverts a matrix on CPU and GPU respectively.
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iRows = 1000; iColumns = 1000;% Number of rows and columns
2 C_on_CPU = randn(iRows, iColumns) ;% Generate Random number on the CPU
InvC_on_CPU = inv(C_on_CPU) ;% Invert the matrix

Listing 1: MATLAB CPU code that generate and invert a matrix.

1 iRows = 1000; iColumns = 1000;% Number of rows and columns

2 C_on_GPU = gpuArray.randn(iRows, iColumns); % Generate Random number on
the GPU

3 InvC_on_GPU = inv(C_on_GPU) ;% Invert the matrix

4 InvC_on_CPU = gather (InvC_on_GPU) ;% Transfer the data from the GPU to CPU

Listing 2: MATLAB GPU code that generate and invert a matrix.

The GPU code, Listing 2, uses the command gpuArray.randn to generate a matrix of normal
random numbers. The build-in function gpuArray . randn is handled by the NVIDIA plug-in that
generates the random number with an underline raw CUDA code. Once the variable C_on_GPU is
created, standard functions such as inv recognize that the variable is on GPU memory and execute
the corresponding GPU function, e.g., inv is executed directly on the GPU. This is completely trans-
parent to the user. If further calculations are needed on the CPU then the command gather transfer
the data from GPU to the CPU, see line 3 of Listing 2. There exist already a lot of supported functions
and this number continuously increases with new releases.

3.2. Parallel sequential Monte Carlo

The structure of the GPU program, that is very similar to the CPU one, is reported in Appendix A
. Before introducing our programming strategy we explain why the GPGPU computing has become
very competitive for high parallel problems.

The GPU were created initially for 3D rendering, in other words, to create a 31 image on a monitor.
A representation of a 3D scene in a monitor is composed of a set of points, known as vertices, that are
based on 2D primitives, called triangles. To display this 3D scene, the GPU considers the set of all
primitives as independent structures and computes various properties, such as lighting and visibility,
independently one to another.

In graphical context the majority of these computations are executed in floating point, so GPUs were
initially optimized for performing these types of computations. Lately, GPUs were extended to double
precision calculation, see Section 4. Since a GPU performs a relatively small set of operations on a
specific set of data points (each vertex on the screen), GPU makers (eg. NVIDIA and ATI) focus
mainly on creating hardware that specializes in these tasks instead of a wide array of operations such
as the CPU. This is a weak and a strong point at the same time, it restricts the set of problems in which
the GPU can be used but allows to perform the specialized tasks more efficiently then the CPU.

The basic example of a high parallelizable problem is matrix multiplication and, in general, matrix
linear algebra. These operations are very suitable for GPGPU computing because they can be easily
divided into the large number of cores available on the GPU, see Gregory and Miller (2012) for an
introduction.

At first sight our problem does not seem to be easily parallelizable. But a closer look shows that the
only sequential part of the algorithm is the time iteration, indeed the results of time ¢+ 1 are dependent
ont.
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Our key idea is to rewrite in matrix form that part of the algorithm that iterates over particles and
predictive draws in order to exploit the GPGPU computational efficiency. Following the notation in
Section 2, we let M be the draws from the predictive densities, K the number of predictive models,
L the number of variables to predict, T' the sample size, and N the number of particles. Consider
L = 1 for the sake of simplicity, then the code carries out a matrix of dimension (M N x K). The
dimension could be large, e.g., in our simulation and empirical exercises they are (5,000 - 1,000 x 3)
and (1,000- 1,000 x 12) respectively. All the operations, such as addition and multiplication, become
just matrix operations. GPU, as explained before, is explicitly designed to carry out these operations.

As an example of such a coding strategy, we describe the parallel version of the initialization step of
the SMC algorithm (see first step of the diagram in Appendix A and subsection (Step 0) in Section
2). We apply a linear regression and then generate a set of normal random numbers to set the initial
values of the states. Using a multivariate approach to the regression problem, we can perform it in just
one single, big matrix multiplication and inversion for all draws. An example of initialization, similar
to the one used in the package, is given in listing 3.!

9% Built the block—diagonal input matrices yil and vYl
yil = [1; vYl = [];

W

for j=1:M
4 yil = blkdiag(yil, vYAU(:, :, j));
5 9% vYAIL(:, :, j) has T rows and K columns

vY1l = blkdiag(vYl, vY);
% vY has T rows and one column
end
9% Load on the GPU
10/mX1GPU = gpuArray(yil);
11|vY1IGPU = gpuArray(vYl);
12|/9%% Initialize particles on the GPU
13lmOmegal0 = inv (mX1GPU' % mXIGPU)=x mXIGPU' = vYIGPU;
14| mMatrix = kron(gpuArray.ones(M, 1), gpuArray.eye(K));
15| mOmegal0 = mOmegal0' = mMatrix;
16| mOmegal0 = kron(gpuArray.ones(N, 1), mOmegalO)
17 + 5 % gpuArray.randn(N = M, K);

®© =

Listing 3: Block Regression on the GPU.

Listing 3 shows that the predictive densities and the observable variables are stacked in block-diagonal
matrices (lines 1-8) of dimensions (T'M x M K) and (T'M x M) by using the command blkdiag,

and then transferred to the GPU by the gpuArray command (lines 10-11). The function gpuArray.randn
is then used to generate normal random numbers on the GPU and thus to initialize the value of the
particles (lines 13-17).

This strategy is carried out all over the program and applied also to the simulation of the set of parti-

cles. For example, listing 4 reports a sample of the code for the SMC prediction step (see subsection

(Step 2.a) in Section 2) for the latent states.

mParticleTemp = S.omegal' + kron(gpuArray.ones(l, M * N), sqrt(Setting.Sigma
)).* gpuArray.randn(K, M = N);

Listing 4: Draws for the latent states.

'In the package, we use the following labelling: Setting.iDimOmega for K, Setting.iDraws for M and
Setting.cN for N.
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The Kronecker product (function kron) creates a suitable matrix of standard deviations. We notice
that the matrix implementation of the filter requires availability of physical memory on the graphics
card. If memory is not enough to run in parallel all the draws, then it is possible to split the M draws
ink = % blocks of size m and to run the combination algorithm sequentially over the blocks, and in
parallel within the blocks.?

The only step of the algorithm which uses the CPU is resampling (see diagram in Appendix A and
subsection (Step 2.d) in Section 2). The generated particles are copied to the CPU memory and after
the necessary calculations, they are passed back to the GPU. This copying back and forth brings a
computational time cost that can be high in small problems but becomes much less important as the
number of particles and series increases.

4. Differences between CPU and GPU Monte Carlo

GPUs can execute calculations in single and double precision as defined by the IEEE 754 standard,
IEEE (2008). Single precision numbers are only half the size of double precision and they are more
limited in the range of values represented. If an application requires a high degree of precision, double
precision numbers are the only possibility. We work with double precision numbers because our
applications focus on density forecasting and precise estimates of statistical quantities, like extreme
events that are in the tails of the predictive distribution, may be very important for economic and
financial decisions.

The GPU card are very fast in single precision calculation but loose power in double precision. There-
fore, some parameters should be set carefully to have a fair comparison between CPU and GPU. First,
both programs are to be implemented in double precision. Second, the CPU program has to be paral-
lel in order to use all available CPU cores. Third, the choice of the hardware is crucial, see Aldrich
(2013) for a discussion. In all our exercises, we use a recent CPU processor, Intel Core 17-3820QM,
launched in 2012Q2. This CPU has four physical cores that doubled thank to the HyperThreading
technology. Not all users of DeCo might have access to such up-to-date hardware giving its costs. So
we run CPU code also using a less expensive machine, the Intel Xeon X3430, launched in 2009Q3. To
run the CPU code in parallel, MATLAB requires the Parallel Computing Toolbox. We also investigate
performance when such option is switched off and the CPU code is run sequentially.

The GPU used in this study is a NVIDIA Quadro K2000M. The card is available at a low cost, but
also has low performance because it is designed for a mobile machine (as the suffix M means). A user
with a desktop computer might have access to a more powerful video card, such as, e.g., a NVIDIA
GTX590 or a NVIDIA Tesla. We refer to MATLAB for alternative cards and, in particular, to the
function “GPUBench”.

Finally we shall emphasize that the results of the CPU and GPU version of the same program are not
necessarily the same. It is likely that the GPU results will be more precise. This is related to the so
called fused multiply add (FMA) operations that GPUs support, see Whitehead and Fit-Florea (2011).
The FMA operation carries along more accurate calculations, unfortunately there are currently no
CPUs that support this new standard. To investigate the numerical difference between CPU and GPU,
we provide some numerical integration exercises based on both standard Monte Carlo integration and
Sequential Monte Carlo integration.

2We run the blocks sequentially because MATLAB has not yet a parallel for loop command for running in parallel the
k = % blocks of GPU computations. The DeCo parallel CPU version fixes m = 1 and parallelizes over the k = M
blocks.
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4.1. Monte Carlo

We consider six simple integration problems and compare their analytical solutions to their crude
Monte Carlo (see Robert and Casella 2004) numerical solutions. Let us consider the two integrals of
the function f over the unit interval

uh) = [ s@an, o) = [ () - p(ae
The Monte Carlo approximations of the integrals are
1 1
in(f) = N;f(Xi)v 5% (f) = N ; (f(Xi) — i (£))?
where X1, ..., X is a sequence of N i.i.d. samples from a standard uniform distribution.

The numerical integration problems considered in the experiments correspond to the following choices
of the integrand function:

L flx) ==
2. f(z) = 2%
3. f(z) = cos(mx).

We repeat G = 1000 times each Monte Carlo integration exercise with sample sizes N = 1500.
Finally, we compute the squared difference between the Monte Carlo and the analytical solution of
the integral. The histogram of the differences between CPU and GPU results are given in Figure
1. The more concentrated the density is on the negative part of the support, the higher is the preci-
sion of the CPU with respect to the GPU. Concentration on the positive part corresponds to a GPU
overperfomance.

The histograms in the first column of Figure 1 have positive standardized mean equal to 0.0051, 0.0059
and 0.0079 respectively and positive skewness equal to 0.3201, 0.2924 and 0.3394 respectively. Thus,
it seems to us that GPU calculations are often more precise. From the histograms in the second column
of Figure 1, one can conclude that differences between GPU and CPU results are larger for the variance
calculation. All histograms have positive standardized mean equal to 0.9033, 0.8401 and 0.3843
respectively and positive skewness equal to 1.6437, 0.0771 and 1.8660 respectively. Nevertheless,
we checked the statistical relevance of the differences between CPU and GPU and run a two-sample
Kolmogorov-Smirnov test on the cumulative density function (cdf) of the CPU and GPU squared
errors. The results of the tests bring us to reject, at about the 30% level, the null hypothesis that
CPU and GPU squared errors come from the same distribution, in favour of the alternative that CPU
squared errors cdf is smaller than the GPU squared error cdf. Thus, we conclude that CPU and GPU
give equivalent results under a statistical point of view up to a 30% significance level. One could
expect that differences between GPU and CPU become more relevant for more difficult integration
problems and operations involving division and matrix manipulations.

4.2. Sequential Monte Carlo

We also provide a raw estimate of the main differences in terms of precision for sampling importance
resampling (SIR), which is a standard sequential Monte Carlo algorithm, applied to filtering of the
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Figure 1: Histograms for the CPU-GPU mean square error differences in the MC estimators of . (f)
and 0]2\,( f) (different columns), for different choices of f (different rows), using G replica-
tions.

hidden states of a nonlinear state space model with known parameters. We consider a stochastic
volatility model

1 ..
Y = exp {QZL‘t}Et, £t i1d. N(,1),t=1,..,T (11)

Pt = —0.01 4092 + neets meer = A(0,0.3) (12)

where N (1, o) denotes a normal distribution with mean y and standard deviation o. The parameter
values are set for a typical weekly financial time series application (see Casarin and Marin 2009). In
Algorithm 1 we give the pseudo-code representation of the prediction and filtering steps of a SMC
algorithm for SV model.

Algorithm 1. - SIR Particle Filter -
o Attime t = to, fori =1,..., N, simulate z}, ~ p(x4,) and set wj, = 1/N
e Attimety <t < T — 1, given =y = {zt,wi}N |, fori=1,...,N:

1. Simulate T}, ~ N (—0.01 + 0.9z}, 0.3).
2. Update 7yjy o wfexp {—5%{, } exp { — 597y exp{~7j 1} }.
3. Normalize 3}, = 'ny/Z;-V:l Yiypi=1,...,N

4. If ESS; < k sample miﬂ, i =1,...,N from {53@_1,%“}?;1 and set
wiy = 1/N, otherwise set x| = &; | and wy | = ;.

= — ) N
5. SetZpy1 = {x} 1, wir1}isg-
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Figure 2: Histogram of the CPU-GPU RMSE differences for the SMC estimates of the SV.

K

0.9999 0.99995 0.99999 0.999995 0.999999
Time 6.906 6.925 6.935 7.008 7.133
Percentage - 0.263 0.393 1.462 3.276

Table 2: GPU computing time (in seconds) for the SMC filter applied to a SV model, for different
ESS threshold x (columns). In the second row: percentage difference respect to the case
k= 0.9999.

We fix T" = 100, N = 1000 and x = 0.7 and repeat G = 1000 times the Sequential Monte Carlo
exercise. We compute root mean square error (RMSE) between the true values z;, t = 1,...,7 and
the simulated ones using a CPU code or a GPU one. Figure 2 displays differences between the
CPU and GPU RMSEs, where again the more concentrated the density is on the negative part of the
support, the higher is the precision of the CPU with respect to the GPU. Concentration on the positive
part corresponds to a GPU overperformance. The skewness of the histogram in Figure 2 is 0.729,
therefore there is a mild evidence in favour of GPU.

The resampling step of the SMC algorithm is performed on CPU and this may induce a loss of com-
putational efficiency in the parallel GPU implementation of our DeCo package. We provides evidence
of this fact for the simple SV model with known parameter values. Table 2 shows the GPU computing
time for different values of the threshold, i.e., x = 0.9999, 0.99995, 0.99999, 0.999995, 0.999999.
The computational cost increase with the values of x and the resampling frequency and the loss of
information in the particle set increase as well. The potential drawback of a too low resampling fre-
quency is the degeneracy of the particle set. In the SMC literature a value of x about 0.7 is generally
considered an appropriate one.

5. Differences between CPU and GPU results 11

Following BCRVD (2013) we compare the cases of Unbiased and Biased predictors and of complete
and incomplete model sets using the DeCo code. We assume the true model is M7 : yi; = 0.1 +

13
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0.6y14—1 + €1¢ with €14 i ./\/(0,02), t = 1,...,T and consider four experiments. We apply
the DeCo package and use the GUI interface described in Appendix B to provide the inputs to the
combination procedure.

Complete model set experiments

We assume the true model belongs to the set of models in the combination. In the first experiments
the model set also includes two biased predictors: Ms : yo; = 0.3 + 0.2yor_o + £9; and M3 : y3; =
0.5+ 0.1ysi—1 + €3¢, with g5 - N(0,02),t =1,...,T,i = 2,3. In the second experiment the
complete model set includes also two unbiased predictors: Mo : yo; = 0.125 + 0.5y2:—2 + €2¢ and

Ms : ysp = 0.2+ 0.2y3_1 + e, with ey %5 N(0,02), 6 =1,...,T, i =2,3.

Incomplete model set experiments

We assume the true model is not in the model set. In the third experiment the model set includes
two biased predictors: Mg : yo; = 0.3 4+ 0.2y2;—2 + €2; and M3 : y3; = 0.5 4 0.1y3;—1 + €34,

with €;; i N(0, 02), t=1,...,7, 1 = 2,3. In the fourth experiment the model set includes
unbiased predictors: Ma @y = 0.125 + 0.5y9; 2 + €24, M3 1 y3¢ = 0.2 + 0.2y3; 1 + €3¢, with
e EEN(0,02),t=1,...,T,i=2,3.

We develop the comparison exercises with both 1000 and 5000 particles. Tables 3 report the time
comparison (in seconds) to produce forecast combination for different experiments and different im-
plementations. Parallel implementation on GPU NVIDIA Quadro K2000M is the most efficient, in
terms of computing time, for all experiments. The gains are often substantial in terms of seconds
(see Table 3, panel (a)), up to several hours when using 5000 particles (see Table 3, panel (b)). More
specifically, the computational gain of the GPU implementation over parallel CPU implementation
varies from 3 to 4 times for the Intel Core i7 and from 5 to 7 times for the Intel Xeon X3430. The
overperformance of the parallel GPU implementation on sequential CPU implementation varies from
15 to 20 times when considering an Intel Xeon X3430 machine as a benchmark.

Figure 3 compares the weights for exercises 1 and 2. The weights follow a similar pattern, but there are
discrepancies between them for some observations. Differences are larger for the median value than
for the smaller and larger quantiles. The differences are, however, smaller and almost vanishes when
one focuses on the predictive densities in Figure 4, which is the most important output of the density
combination algorithm. We interpret the results as evidence of no economic and statistic significance
of the differences between CPU and GPU draws.

Results are similar when focusing on the incomplete model set in Figures 5-6. Evidence does not
change when we use 5000 particles.

Learning mechanism experiments

BCRVD (2013) document that a learning mechanism in the weights is crucial to identify the true
model (in the case of complete model set) or the best model (in the case of incomplete model set)
when the predictors are unbiased, see also left panels in Figure 3-5. We repeat the two unbiased
predictor exercises and introduce learning in the combination weights as discussed in Section 2. We
set the learning parameters A = 0.95 and 7 = 9. Table 4 reports the time comparison (in seconds)
when using 1000 and 5000 particles filtered model probability weights. The computation time for
DeCo increases when learning mechanisms are applied, in particular for the CPU. The GPU is from
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Figure 3: GPU and CPU 1000 particles filtered model probability weights for the complete model set.
Model weights and 95% credibility region for models 1,2 and 3 (different rows).
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Figure 4: GPU and CPU 1000 particles filtered density forecasts for the complete model set. Mean
and 95% credibility region of the combined predictive density.
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(a) 1000 Particles

p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon
Complete Model Set

1 Biased Predictors 699 2780 5119 11749
3.97) (7.32) (16.80)

2 Unbiased Predictors 660 2047 5113 11767
(3.10) (7.75) (17.83)

Incomplete Model Set

3 Biased Predictors 671 2801 5112 11635
4.17) (7.62) (17.34)

4 Unbiased Predictors 687 2035 5098 11636
(2.96) (7.42) (16.94)

(b) 5000 particles
p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon
Complete Model Set

1 Biased Predictors 4815 15154 26833 64223
(3.15) (5.57) (13.34)

2 Unbiased Predictors 5302 15154 26680 63602
(2.86) (5.03) (12.00)

Incomplete Model Set

3 Biased Predictors 4339 13338 26778 64322
(3.07) (6.17) (14.82)

4 Unbiased Predictors 4581 13203 26762 63602
(2.88) (5.84) (13.88)

Table 3: Density combination computing time in seconds.

Rows:

different simulation exercises.

Columns: parallel GPU (p-GPU) and parallel CPU (p-CPU-i7) implementations on GPU
NVIDIA Quadro K2000M with CPU Intel Core i7-3820QM, 3.7GHz; parallel CPU (p-
CPU-Xeon) and sequential CPU (CPU-Xeon) implementations on Intel Xeon X3430 4core,
2.40GHz. In parenthesis: efficiency gain in terms of CPU/GPU times ratio.

10 to 50% slower than without learning, but CPU is from 2.5 to almost 4 times slower than previously.
The GPU/CPU ratio, therefore, increases in favor of GPU with GPU computation from 5 to 70 times
faster depending on the alternative CPU machine considered. The DeCo codes with learning have
some if commands related to the minimum numbers of observations necessary to initiate the learning
which increases computational time substantially. The parallelization in GPU is more efficient and
these if commands play a minor role. We expect that the gain might increase to several hundred of
times when using parallelization on cluster of computers.

17
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p-GPU p-CPU-i7 p-CPU-Xeon CPU-Xeon
(a) 1000 Particles

2 Complete Model Set 755 7036 14779 52647
(9.32) (19.57) (69.73)
4 Incomplete Model Set 719 6992 14741 52575
9.72) (20.49) (73.08)
(b) 5000 particles
2 Complete Model Set 7403 35472 73402 274220
4.79) 9.92) (37.04)
4 Incomplete Model Set 7260 35292 73256 274301
(4.86) (10.09) (37.78)

Table 4: Density combination computing time in seconds. Rows: different simulation exercises.
Columns: parallel GPU (p-GPU) and parallel CPU (p-CPU-i7) implementations on GPU
NVIDIA Quadro K2000M with CPU Intel Core i7-3820QM, 3.7GHz; parallel CPU (p-
CPU-Xeon) and sequential CPU (CPU-Xeon) implementations on Intel Xeon X3430 4core,
2.40GHz. In parenthesis: efficiency gain in terms of CPU/GPU times ratio.

6. Empirical application

As a further check of the performance of the DeCo code, we compare the CPU and GPU versions
in the macroeconomic application developed in BCRVD (2013). We consider K = 6 time series
models to predict US GDP growth and PCE inflation: an univariate autoregressive model of order
one (AR); a bivariate vector autoregressive model for GDP and PCE, of order one (VAR); a two-state
Markov-switching autoregressive model of order one (ARMS); a two-state Markov-switching vector
autoregressive model of order one for GDP and inflation (VARMS); a time-varying autoregressive
model with stochastic volatility (TVPARSV); and a time-varying vector autoregressive model with
stochastic volatility (TVPVARSV). Therefore, the model set includes constant parameter univari-
ate and multivariate specification; univariate and multivariate models with discrete breaks (Markov-
Switiching specifications); and univariate and multivariate models with continuous breaks. These are
typical models applied in macroeconomic forecasting; see, for example, Clark and Ravazzolo (2012),
Korobilis (2013) and D’ Agostino, Gambetti, and Giannone (2013).

We evaluate the two combination methods by applying the following evaluation metrics: Root Mean
Square Prediction Errors (RMSPE), Kullback Leibler Information Criterion (KLIC) based measure,
the expected difference in the Logarithmic Scores (LS) and the Continuous Rank Probability Score
(CRPS). Accuracy statistics and related tests (see BCRVD (2013)) are used to compare the forecast
accuracy.

Table 5 reports results for the multivariate combination approach. For the sake of brevity, we just
present results using parallel GPU and the best parallel CPU Intel Core 17-3820QM machine. We
also do not consider learning mechanism in the weights. GPU is substantially faster, almost 5.5
times faster than CPU, reducing the computational time of more than 5000 seconds. GPU is therefore
performing relatively better in this exercise than in the previous simulation exercises (without learning
mechanisms). The explanation relies on the larger set of models and the multivariate application. The
number of simulation has increased substantially and CPU starts to hit physical limits, slowing down
the computation and extending time. GPU has not binding limits and just double the time of simulation
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GDP Inflation
GPU CPU GPU CPU
Time 1249 6923 - -
RMSPE 0.634 0.637 0.255 0.256
CW 0.000 0.000 0.000 0.000
LS -1.126 -1.130 0.251 0.257
p-value  0.006  0.005 0.021 0.022
CRPS 0.312 0.313 0.112 0.112
p-value  0.000 0.000 0.000 0.000

Table 5: Computing time and forecast accuracy for the macro-economic application for the GPU (col-
umn GPU) and CPU (column CPU) implementations. Rows: Time: time in seconds to run
the exercise in seconds; RMSPE: Root Mean Square Prediction Error; CW: p-value of the
Clark and West (2007) test; LS: average Logarithmic Score over the evaluation period; CRPS:
cumulative rank probability score; LS p-value and CRPS p-value: Harvey et al. (1997) type
of test for LS and CRPS differentials respectively.

exercises with a univariate series and the same number of draws and particles.® This suggests that GPU
might be an efficient methodology to investigate when averaging large set of models.

Accuracy results for CPU and GPU combinations are very similar and just differ after the third dec-
imals, confirming previous intuitions that the two methods are not necessarily numerical identical,
but provide identical economic and statistical conclusions.* The combination approach is statistically
superior to the AR benchmark for all the three accuracy measures we implement.

7. Conclusion

This paper introduces the MATLAB package DeCo (Density Combination) based on parallel Sequen-
tial Monte Carlo simulations to combine density forecasts with time-varying weights and different
choices of scoring rule.

The package is easy to use for a standard MATLAB user and to facilitate promulgation we have
implemented a GUI user interface, which just requires a few input parameters. The package takes full
advantage of recent computer hardware progresses and uses banks of parallel SMC algorithms for the
density combination both using multi-core CPU and GPU implementation.

The DeCo GPU version is faster than the CPU version up to 70 times and even more for larger set of
models. More specifically, our simulation and empirical exercises were conducted using a commercial
notebook with CPU Intel Core 17-3820QM and GPU NVIDIA Quadro K2000M, and MATLAB 2012b
version, and show that DeCo GPU version is faster than the parallel CPU version, up to 10 times
when weights include a learning mechanism and up to 5.5 times without it, when using a i7 CPU
machine and the Parallel Computing Toolbox. These findings are similar to results in Brodtkorb et al.
(2013) when using a raw CUDA environment. In the comparison between GPU and non-parallel CPU

3Unreported results show that GPU is more than 36 times faster than sequential CPU implementation on Intel Xeon
X3430 4core.

“Numbers for the CPU combination differ marginally from those in Table 5 in BCRVD (2013) due to the use of a
different MATLAB version, different generator numbers and parallel tooling functions. Also in this case, the differences are
numerically, but very small and therefore have not any economic and statistical significance.
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implementations, the differences between GPU and CPU time, increase up to almost 70 times, when
using a standard CPU processor, such as quad-core Xeon. Our results can be further improved with the
use of more powerful graphical cards, such as GTX cards. All comparisons have been implemented
using double precision for both CPU and GPU versions. However, if an application allows for a lower
degree of precision, then single precision calculation can be used and massive gains (up to 500) can
be attained as documented in Lee et al. (2010) and Geweke and Durham (2012).

We also document that the CPU and GPU versions do not necessarily provide the exact same nu-
merical solutions to our problems, but differences are not economically and statistically significant.
Therefore, users of DeCo might choose between the CPU and GPU versions depending on the avail-
able and preferred clusters.

Finally, we expect that our research and the DeCo GPU implementation will benefit enormously by

the improvement in the MATLAB libraries for parallel computing, such as the possible incorporation
of a parallel “for” loop command for GPU.
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A . Flow-chart of GPU DeCo package
@ . Transfer the data and initialize
the particle set on GPU (Step 0)

Propagate particle values and update parti-
cle weights on GPU (Steps 1 and 2.a-2.c)

If £ESS; < k (Step 2.d)

Transfer back the data
to the CPU (Step 2.d)

bt Resampling particles
- on the CPU (Step 2.d)

Transfer back the data
to the GPU (Step 2.d)

[ Update the particle set on GPU (Step 2.d) }7 No

Ift < T

No

[Transfer back data and finalize calculations]

Figure 7: Flow chart of the parallel SMC filter given in Section 2.
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B . The GUI user interface
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Figure 8: The graphical user interface of the DeCo package.

The Figure 8 shows the GUI of the DeCo package, that contains all the necessary inputs for our
program. The ListBox loads and displays the available dataset in the directory Dataset. The figure
shows, as example, the dataset Total.mat, our empirical exercise. The number of particles and
the block of selected series are chosen in the edit box “Settings”. The default values are set to 50
for the particles and 10 for the block of series. The second command is relevant only for the GPU
version. The box options contains the command for saving results. The results are saved in the
directory OutputC' PU or OutputGPU depending on the type of calculation chosen. Finally the
bottom “CPU” starts the corresponding CPU program and the bottom “GPU” executes the program
on the GPU. The box "Setting Learning Parameter” allows the user to perform the calculation with or
without learning, see section 5. When the option Learning is chosen, the edit box allows to set the
learning parameter, the default values are A = 0.95 and 7 = 9.

Some considerations are in order. First, the CPU is already implemented in parallel form. The user
has to start a parallel session in MATLAB by typing the command matlabpool open in the MATLAB
main window. Please refer to MATLAB online help. Second, the dataset accepted by the program is
mat format and has the following form. It includes two variables, the first one is defined as vY and it
contains a (7' x L) matrix of the the variables {y;}Z_; to be predicted, where T is the number of 1-step
ahead forecasts and L the size of observable variables to forecast. The second one is a 4 — D matrix
defined mX with the following dimensions (7', M, L, K L) , where M is the size of i.i.d. samples
from the predictive densities, and K L the number of 1-step ahead predictive densities. Finally, the
user might apply different learning mechanisms based on other scoring function that the one applied
and discussed in Section 2 should change the function “PFCore.m”.
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