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a b s t r a c t

We propose a Bayesian combination approach for multivariate predictive densities which relies
upon a distributional state space representation of the combination weights. Several specifications of
multivariate time-varying weights are introduced with a particular focus on weight dynamics driven by
the past performance of the predictive densities and the use of learning mechanisms. In the proposed
approach the model set can be incomplete, meaning that all models can be individually misspecified.
A Sequential Monte Carlo method is proposed to approximate the filtering and predictive densities. The
combination approach is assessed using statistical and utility-based performancemeasures for evaluating
density forecasts of simulated data, US macroeconomic time series and surveys of stock market prices.
Simulation results indicate that, for a set of linear autoregressive models, the combination strategy is
successful in selecting, with probability close to one, the true model when the model set is complete and
it is able to detect parameter instability when the model set includes the true model that has generated
subsamples of data. Also, substantial uncertainty appears in the weights when predictors are similar;
residual uncertainty reduces when the model set is complete; and learning reduces this uncertainty. For
themacro series we find that incompleteness of themodels is relatively large in the 1970’s, the beginning
of the 1980’s and during the recent financial crisis, and lower during the Great Moderation; the predicted
probabilities of recession accurately compare with the NBER business cycle dating; model weights have
substantial uncertainty attached.With respect to returns of the S&P 500 series, we find that an investment
strategy using a combination of predictions from professional forecasters and from a white noise model
puts more weight on the white noise model in the beginning of the 1990’s and switches to giving more
weight to the professional forecasts over time. Information on the complete predictive distribution and
not just on some moments turns out to be very important, above all during turbulent times such as the
recent financial crisis. More generally, the proposed distributional state space representation offers great
flexibility in combining densities.
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1. Introduction

When multiple forecasts are available from different models
or sources it is possible to combine these in order to make use
of all relevant information on the variable to be predicted and,
as a consequence, to produce better forecasts. One of the first
papers on forecasting with model combinations is Barnard (1963),
who considered air passenger data, and see also Roberts (1965)
who introduced a distributionwhich includes the predictions from
two experts (or models). This latter distribution is essentially a
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weighted average of the posterior distributions of two models
and is similar to the result of a Bayesian Model Averaging (BMA)
procedure. See Hoeting et al. (1999) for a review on BMA, with
a historical perspective. Raftery et al. (2005) and Sloughter et al.
(2010) extend the BMA framework by introducing a method for
obtaining probabilistic forecasts from ensembles in the form of
predictive densities and apply it to weather forecasting.

Our paper builds on another stream of literature, starting
with Bates and Granger (1969) and dealing with the combination
of predictions from different forecasting models; see Granger
(2006) for an updated review. Granger and Ramanathan (1984)
extend Bates andGranger (1969) and propose to combine forecasts
with unrestricted regression coefficients as weights. Liang et al.
(2011) derive optimal weights in a similar framework. Billio et al.
(2000) and Terui and van Dijk (2002) generalize the least square
weights by representing the dynamic forecast combination as a
state space with weights that are assumed to follow a random
walk process. This approach has been extended by Guidolin and
Timmermann (2009), who introduce Markov-switching weights,
and by Hoogerheide et al. (2010), who propose robust time-
varying weights and account for both model and parameter
uncertainty in model averaging. Raftery et al. (2010) derive time-
varyingweights in ‘‘dynamicmodel averaging’’, following the spirit
of Terui and van Dijk (2002), and speed up computations by
applying forgetting factors in the recursive Kalman filter updating.
Hansen (2007) and Hansen (2008) compute optimal weights by
maximizing aMallow criterion. Hall andMitchell (2007) introduce
the Kullback–Leibler divergence as a unified measure for the
evaluation and combination of density forecasts and suggest
weights that maximize such a distance, see also Geweke and
Amisano (2010b). Gneiting and Raftery (2007) recommend strictly
proper scoring rules, such as the cumulative rank probability score.

In this paper, we assume that the weights associated with
the predictive densities are time-varying and propose a general
distributional state space representation of predictive densities
and combination schemes. For a review on basic distributional
state space representations in the Bayesian literature, see Harrison
and West (1997). Our combination method allows for all models
to be false and therefore the model set to be misspecified (see
Diebold (1991)) or, in other words, incomplete as discussed in
Geweke (2010) and Geweke and Amisano (2010b). In this sense
we extend the state space representation of Terui and van Dijk
(2002) and Hoogerheide et al. (2010) and the model mixing via a
mixture of experts (see for example Jordan and Jacobs (1994) and
Huerta et al. (2003)). Our approach is general enough to include
multivariate linear and Gaussian models (e.g., see Terui and van
Dijk (2002)), dynamic mixtures and Markov-switching models
(e.g., see Guidolin and Timmermann (2009)), as special cases.
We represent our combination schemes in terms of conditional
densities and write equations for producing predictive densities
and not point forecasts (as is often the case) for the variables
of interest. Given this general representation, we can estimate
(optimal) model weights that minimize the distance between the
empirical density and the combination density, by taking into
account past performances. In particular, we consider convex
combinations of the predictive densities and assume that the
time-varying weights associated with the different predictive
densities belong to the standard simplex. Under this constraint
the weights can be interpreted as discrete probabilities over the
set of predictors. Tests for a specific hypothesis on the values
of the weights can be conducted due to their random nature.
We discuss weighting schemes with continuous dynamics, which
allow for a smooth convex combination of the predictive densities.
A learningmechanism is also introduced to enable the dynamics of
each weight to be driven by past and current performances of the
predictive densities of all models in the combinations.

The constraint that time-varying weights associated with
different forecast densities belong to the standard simplex makes
the inference process non-trivial and calls for the use of nonlinear
filtering methods. We apply simulation based filtering methods,
such as Sequential Monte Carlo (SMC), in the context of combining
forecasts, see for example Doucet et al. (2001) for a review with
applications of this approach andDelMoral (2004) for convergence
issues. SMC methods are extremely flexible algorithms that can
be applied for inference to both off-line and on-line analysis
of nonlinear and non-Gaussian latent variable models used in
econometrics. For example, see Billio and Casarin (2010, 2011) for
an application to business cycle models and (Creal, 2009) for a
review.

Important features of our Bayesian combination approach are
analyzed using a set of Monte Carlo simulation experiments.
The results are briefly summarized as follows. For the case of
a set of linear models, the combination strategy is successful in
selecting with probability close to one the true model when the
model set is complete. High uncertainty levels in the combination
weights appear due to the presence of predictors that are similar
in terms of unconditional mean and that differ slightly in terms
of unconditional variance. The learning mechanism produces
better discrimination between forecast models with the same
unconditional mean, but different unconditional variance. The
degree of uncertainty in the residuals reduces when the model set
is complete. A combination of linear with nonlinear models shows
that the learning period may be longer than for the case in which
only linear models are present. Finally, we consider an example of
a set of models containing a true model with structural instability.
The proposed combination approach is able to detect the instability
when the model set includes the true model that is generating
subsamples of data.

To show practical and operational implications of the proposed
approach with real data, this paper focuses on the problem
of combining density forecasts using two relevant economic
datasets. The first one contains the quarterly series of US real
Gross Domestic Product (GDP) and US inflation as measured by
the Personal Consumption Expenditures (PCE) deflator. Density
forecasts are produced by several of the most commonly used
models in macroeconomics. We combine these densities forecasts
in a multivariate set-up with model and variable specific weights.
For these macro series we find that incompleteness of the models
is relatively large in the 1970’s, the beginning of the 1980’s and
during the recent financial crisis while it is lower during the Great
Moderation. Furthermore, the predicted probabilities of recession
accurately compare with the NBER business cycle dating. Model
weights have substantial uncertainty and neglecting it may yield
misleading inference on the model’s relevance. To the best of our
knowledge, there are no other papers applying this general density
combination method to macroeconomic data.

The second dataset considers density forecasts on future move-
ments of a stock price index. Recent literature has shown that
survey-based forecasts are particularly useful for macroeconomic
variables, but there are fewer results for finance. We consider den-
sity forecasts generated by financial survey data. More precisely
we use the Livingston dataset of six-months-ahead forecasts on
the Standard & Poor’s 500 (S&P 500), combine the survey-based
densities with the densities from a simple benchmark model and
provide both statistical and utility-based performancemeasures of
the mixed combination strategy. To be specific, with respect to the
returns of the S&P 500 series we find that an investment strategy
using a combination of predictions from professional forecasters
and from awhite noisemodel putsmoreweight on thewhite noise
model in the beginning of the 1990’s and switches to giving more
weight to the professional forecasts over time.

Information on the complete predictive distribution and not
just from basic first and second order moments turns out to be
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very important in all investigated cases and, more generally, the
proposed distributional state space representation of predictive
densities and of combination schemes is demonstrated to be very
flexible.

The structure of the paper is as follows. Section 2 introduces
predictive density combination in amultivariate context. Section 3
presents different models for the weight dynamics and introduces
learning mechanisms. Section 4 describes the nonlinear filtering
problem and shows how Sequential Monte Carlo methods could
be used to combine predictive densities. Section 5 contains
results using simulated data and Section 6 provides results of
the application of the proposed combination method to the
macroeconomic and financial datasets. Section 7 concludes. In the
Appendices the datasets used are described in detail. Moreover,
alternative combination schemes and the relationships with some
existing schemes in the literature are discussed together with the
Sequential Monte Carlo method used.

2. Combinations of multivariate predictive densities

Let yt ∈ Y ⊂ RL be the L-vector of observable variables at time
t and y1:t = (y1, . . . , yt) be the collection of these vectors from
1, . . . , t . Let ỹk,t = (ỹ1k,t , . . . , ỹ

L
k,t)

′
∈ Y ⊂ RL be the typical one-

step-ahead predictor for yt for the k-thmodel,where k = 1, . . . , K .
For the sake of simplicity we present the new combinationmethod
for the one-step-ahead forecasting horizon, but our results can
easily be extended to multi-step-ahead forecasting horizons.

Assume that the L-vector of observable variables is generated
from a distribution with conditional density p(yt |y1:t−1) and
that for each predictor ỹk,t there exists a predictive density
pk(ỹk,t |y1:t−1). To simplify notation, inwhat followswe define ỹt =

vec(Ỹ ′
t ), where Ỹt = (ỹ1,t , . . . , ỹK ,t) is the L×K matrix of predictors

and vec is the operator that stacks the columns of thismatrix into a
KL-vector. We denote with p(ỹt |y1:t−1) the joint predictive density
of the set of predictors at time t and let

p(ỹ1:t |y1:t−1) =

t
s=1

p(ỹs|y1:s−1)

be the joint predictive density of the predictors up to time t .
Generally speaking a combination scheme of a set of predictive

densities is a probabilistic relationship between the density of
the observable variable and the set of predictive densities. This
relationship between the density of yt , conditionally on y1:t−1, and
the set of predictive densities from the K different sources is given
as:

p(yt |y1:t−1) =


YKt

p(yt |ỹ1:t , y1:t−1)p(ỹ1:t |y1:t−1)dỹ1:t (1)

where the specific dependence structure between the observable
and the predictive densities is specified below. This relationship
might be misspecified because all models in the combination
are false (incomplete model set) and to model this possibly
misspecified dependence we consider a parametric latent variable
model. We also assume that this model is dynamic to capture time
variability in the dependence structure. Modeling the relationship
between the observable and the predictive densities allows us to
compute combination residuals and their distributions, which is
a measure of the incompleteness of the model set. For example,
the analysis of the residuals may be used to measure the lack
of contribution of each model to the forecast of the variable of
interest. The residual analysis may also reveal the presence of time
variation in the incompleteness level, e.g. due to structural change
in the Data Generating Process (DGP). In Section 5 we investigate
these issues through some Monte Carlo simulation studies.

Among others, Hall and Mitchell (2007), Jore et al. (2010) and
Geweke and Amisano (2010b) discuss the use of the log score as a

ranking device on the forecast ability of different models. The log
score is easy to evaluate and can be used to detect misspecification
by studying how model weights change over different vintages.
One differencewith our approach is that we consider the complete
distribution of the residuals. This gives us information about
a bad fit in the center but also about a bad fit on scale and
tails of the distribution; some results are reported in Section 5.
Therefore, we can contemporaneously study the dynamics of both
weight distributions and predictive errors. Furthermore, the log
score appears to be sensitive to tail events; see the discussion in
Gneiting and Raftery (2007) and Gneiting and Ranjan (2011). In the
empirical macroeconomic application we compare our method to
combination schemes based on log score, see Section 6. However,
a careful analysis of the relative advantages of using the log score
versus the time-varying combinations of predictive densities is a
topic for further research.

To specify the latent variable model and the combination
scheme we first define the latent space. Let 1n = (1, . . . , 1)′ ∈ Rn

and 0n = (0, . . . , 0)′ ∈ Rn be the n-dimensional unit and null
vectors respectively and denote with ∆[0,1]n ⊂ Rn the set of all
vectors w ∈ Rn such that w′1n = 1 and wk ≥ 0, k = 1, . . . , n.
∆[0,1]n is called the standard n-dimensional simplex and is the
latent space used in all our combination schemes.

Then, we introduce the latent model, that is a matrix-valued
stochastic process, with random variable Wt ∈ W ⊂ RL

× RKL,
which represents the time-varying weights of the combination
scheme. Denote with wl

h,t the h-th column (h = 1, . . . , KL) and
l-th row (l = 1, . . . , L) elements of Wt , then we assume that
the row vectors wl

t = (wl
1,t , . . . , w

l
KL,t) satisfy wl

t ∈ ∆[0,1]KL .
The proposed latent variable modeling framework generalizes
previous literature on model combinations with exponential
weights (see for example Hoogerheide et al. (2010)) by inferring
dynamics of positiveweightswhich belong to the simplex∆[0,1]LK .

1

As the latent space is the standard simplex, the combination
weights are [0, 1]-valued processes and one can interpret them
as a sequence of prior probabilities over the set of models. In
our framework, the prior probability on the set of models is
random, as opposed to the standard model selection or BMA
frameworks, where the model prior is fixed. The likelihood,
given by the combination scheme, allows us to compute the
posterior distribution on the model set. In this sense the proposed
combination scheme shares some similaritieswith the dilution and
hierarchical model set prior distributions for BMA, proposed in
George (2010) and Ley and Steel (2009) respectively. See Diebold
and Pauly (1990) for the use of hierarchical prior information in
the estimation of unrestricted combination weights. A hierarchical
specification of the weights in order to achieve a reduction of the
model space by removing redundant weights is a matter of further
research.

We assume that at time t , the time-varying process of random
Wt has a distributionwith density p(Wt |y1:t−1, ỹ1:t−1). Thenwe can
write Eq. (1) as

p(yt |y1:t−1) =


YKt


W

p(yt |Wt , ỹt)p(Wt |y1:t−1, ỹ1:t−1)dWt


× p(ỹ1:t |y1:t−1)dỹ1:t . (2)

We assume a quite general specification of the transition density,
p(Wt |Wt−1, y1:t−1, ỹ1:t−1), that allows the weights to have a first-
order Markovian dynamics and to depend on the past values

1 Winkler (1981) does not restrict weights to the simplex, but allows them to be
negative. It would be interesting to investigate which restrictions are necessary to
assure positive predictive densities with negative weights in our framework. We
leave this for further research.
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y1:t−1 of the observables and ỹ1:t−1 of the predictors. Under this
assumption, the inner integral in Eq. (2) can be further decomposed
as follows

p(Wt |y1:t−1, ỹ1:t−1) =


W

p(Wt |Wt−1, y1:t−1, ỹ1:t−1)

× p(Wt−1|y1:t−2, ỹ1:t−2)dWt−1. (3)

The proposed combination method extends previous model
pooling by assuming possibly non-Gaussian predictive densities as
well as nonlinear weight dynamics that maximize general utility
functions.

It is important to highlight that this nonlinear state space rep-
resentation offers a great flexibility in combining densities. In
Example 1 we present a possible specification of the conditional
predictive density p(yt |Wt , ỹt), that we consider in the applica-
tions. In Appendix B we present two further examples that allow
for heavy-tailed conditional distributions. In the next section we
will also consider a specification for the weight’s transition den-
sity p(Wt |Wt−1, y1:t−1, ỹ1:t−1).

Example 1 (Gaussian Combination Scheme). The conditional Gaus-
sian combinationmodel is defined by the probability density func-
tion

p(yt |Wt , ỹt) ∝ |Σ |
−

1
2 exp


−

1
2


yt − Wt ỹt

′
× Σ−1 yt − Wt ỹt

 
(4)

whereWt ∈ ∆[0,1]L×KL is the weight matrix defined above andΣ is
the covariance matrix. �

A special case of the previous model is given by the following
specification of the combination

p(yt |Wt , ỹt) ∝ |Σ |
−

1
2 exp


−

1
2


yt −

K
k=1

wk,t ⊙ ỹk,t

′

× Σ−1


yt −

K
k=1

wk,t ⊙ ỹk,t


(5)

where wk,t = (w1
k,t , . . . , w

L
k,t)

′ is a weights vector and ⊙ is the
Hadamard product. The system of weights is given as wl

t = (wl
1,t ,

. . . , wl
L,t)

′
∈ ∆[0,1]L , for l = 1, . . . , L. In this model the weights

may vary over the elements of yt and only the i-th elements of each
predictor ỹk,t of yt are combined in order to have a prediction of the
i-th element of yt .

Other special cases of model combinations are given in the
Appendix.

3. Weight dynamics

In this section we discuss the specification of the weight
conditional density, p(Wt |Wt−1, y1:t−1, ỹ1:t−1), appearing in (3).
First, we introduce a vector of latent processes xt = vec(Xt) ∈ RKL2

where Xt = (x1t , . . . , x
L
t )

′ and xlt = (xl1,t , . . . , x
l
KL,t)

′
∈ X ⊂ RKL.

Next, for the l-th predicted variables of the vector yt , in order to
haveweightswl

t which belong to the simplex∆[0,1]KL , we introduce
the multivariate transform g = (g1, . . . , gKL)′

g :


RKL

→ ∆[0,1]KL

xlt → wt = (g1(xlt), . . . , gKL(x
l
t))

′.
(6)

Under this convexity constraint, the weights can be interpreted as
discrete probabilities over the set of predictors and a hypothesis
on the specific values of the weights can be tested by using their
random distributions.

In the simple case of a constant-weights combination scheme
the latent process is simply xlh,t = xlh, ∀t , where xlh ∈ R is a set
of predictor-specific parameters. The weights can be written as:
wl

h = gh(xl) for each l = 1, . . . , L, where for example

gh(xl) =
exp{xlh}

KL
j=1

exp{xlj}
, with h = 1, . . . , KL (7)

is the multivariate logistic transform. In standard Bayesian model
averaging, xl is equal to the marginal likelihood, see, e.g. Hoeting
et al. (1999). Geweke and Whiteman (2006) propose to use the
logarithm of the predictive likelihood, see, e.g. Hoogerheide et al.
(2010) for further details. Mitchell and Hall (2005) discuss the
relationship of the predictive likelihood to the Kullback–Leibler
information criterion. We note that such weights assume that
the model set is complete and the true DGP can be observed or
approximated by a combination of different models.

3.1. Time-varying weights

Time-varying parameters can create substantial flexibility in
dynamic models. Thus, we suggest to define for the latent xlh
a stochastic process that accounts for the time variation of the
combination weights. In our first specification of Wt , we assume
that the weights have their fluctuations generated by the latent
process

xt ∼ p(xt |xt−1) (8)

with a non-degenerate distribution and then apply the transform
g defined in Eq. (6)

wl
t = g(xlt), l = 1, . . . , L (9)

where wl
t = (wl

1,t , . . . , w
l
KL,t) ∈ ∆[0,1]KL is the l-th row of Wt .

Note that this prior specification is a special case of the transition
density, p(Wt |Wt−1, y1:t−1, ỹ1:t−1), appearing in Eq. (3), where we
assume the model weights do not depend on the past values ỹ1:t−1
of the predictors and y1:t−1 of the observables.

Example 2 (Logistic-Transformed Gaussian Weights). We assume
that the conditional density function of xt is a Gaussian one

p(xt |xt−1) ∝ |Λ|
−

1
2 exp


−

1
2
(xt − xt−1)

′Λ−1 (xt − xt−1)


(10)

where Λ is the covariance matrix and the weights are logistic
transforms of the latent process

wl
h,t =

exp{xlh,t}
KL
j=1

exp{xlj,t}
, h = 1, . . . , KL, l = 1, . . . , L.

The filtering density function of the weights wl
t is not of a known

form and will be computed by a nonlinear filtering method, see
Section 4. �

3.2. Learning mechanism

We generalize the weight structures described above and in
the related literature (see for example Hoogerheide et al. (2010))
by including a learning strategy in the weight dynamics and
by estimating these weights using nonlinear filtering (see also
Branch (2004) for a discussion of the learning mechanism in
macroeconomic forecasting). Our weights are explicitly driven
by the past and current forecast errors and capture the residual
evolution of the combination scheme. Instead of choosing between
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the use of exponential discounting in theweight dynamics or time-
varying random weights (see Diebold and Pauly (1987) and for
an updated review Timmermann (2006)), we combine the two
approaches.

We consider an exponentially weighted moving average of
the forecast errors of the different predictors. In this way it
is possible to have at the same time a better estimate of the
current distribution of the prediction error and to attribute greater
importance to the most recent prediction error. We consider a
moving window of τ observations and define the distance vector
elt = (el1,t , . . . , e

l
KL,t)

′, where

elK(l−1)+k,t = (1 − λ)

τ
i=1

λi−1f

ylt−i, ỹ

l
k,t−i


,

k = 1, . . . , K , l = 1, . . . , L (11)

is an exponentially weighted average of forecast errors, with λ ∈

(0, 1) a smoothing parameter and f (y, ỹ) a measure of the forecast
error. In this paper we consider the distribution of the quadratic
errors, approximated through i.i.d. draws from the predictive
density of ylk,t . Note that other forecast measures proposed in
the literature, such as utility-based measure or predictive log
score, could be used in our combination approach with learning.
Define et = vec(Et), where Et = (e1t , . . . , e

L
t ), then we specify

the following relationship between combination weights and
predictors

wl
t = g(xlt), l = 1, . . . , L (12)

xt ∼ p(xt |xt−1,∆et) (13)

where∆et = et − et−1. In this way, we include the exponentially
weighted learning strategy into the weight dynamics and estimate
the density of xt accounting for the density of the conditional
square forecast errors pλ(elh,t |ylh,t−τ :t−1, y

l
t−τ :t−1) induced by

Eq. (11). We emphasize that for the l-th variable in themodel, with
l = 1, . . . , L, an increase at time t in the average of the square
forecasting errors implies a reduction in the value of the weight
associated with the h-th predictor in the predictive density for the
l-th variables in yt . Thus in the specification of the weights density
we assume that the conditional mean is an increasing function
of ∆et . One possible choice of the weight density is given in the
following example.

Example 3 (Logistic-Gaussian Weights (Continued)). Let wl
t =

g(xlt), with l = 1, . . . , L, we assume that the distribution of xt
conditional on the prediction errors is

p(xt |xt−1, yt−τ :t−1, ỹt−τ :t−1)

∝ |Λ|
−

1
2 exp


−

1
2
(xt − xt−1 +∆et)′

× Λ−1 (xt − xt−1 +∆et)

. � (14)

Note that the above specification of the weight dynamics
with learning leads to a special case of the transition density
p(Wt |Wt−1, y1:t−1, ỹ1:t−1) of Eq. (3), where we assume that the
weight dynamics depend on the recent values of the predictors and
observables, i.e. p(Wt |Wt−1, y1:t−1, ỹ1:t−1) = p(Wt |Wt−1, yt−τ :t−1,
ỹt−τ :t−1), τ > 0. Under these assumptions, the first integral in
Eq. (2) simplifies as it is nowdefined on the setYK(τ+1) and is taken
with respect to the probability measure that has p(ỹt−τ :t |y1:t−1)
as joint predictive density. As a final remark, note that the weight
dynamics do not include information about the predictive density
p(ỹt |y1:t−1), such as the correlation between the predictors, which
is available at time t . Our combination approach can be extended

to include such a piece of information, when the researcher thinks
it plays a crucial role in the forecasting problem.
Summary of the applied combination scheme

In the simulation exercises and in the empirical applications
we will apply a Gaussian combination scheme with logistic-
transformed Gaussian weights with and without learning. The
scheme is specified as:

p(yt |Wt , ỹt) ∝ |Σ |
−

1
2 exp


−

1
2


yt − Wt ỹt

′
Σ−1 yt − Wt ỹt


where wl

t , l = 1, . . . , L elements ofWt ; and

wl
h,t =

exp{xlh,t}
KL
j=1

exp{xlj,t}
, with h = 1, . . . , KL

p(xt |xt−1) ∝ |Λ|
−

1
2 exp


−

1
2
(xt − xt−1)

′Λ−1 (xt − xt−1)


with xt = vec(Xt) ∈ RKL2 where Xt = (x1t , . . . , x

L
t )

′ and extended
with learning as:

p(xt |xt−1, yt−τ :t−1, ỹt−τ :t−1)

∝ |Λ|
−

1
2 exp


−

1
2
(xt − xt−1 +∆et)′

× Λ−1 (xt − xt−1 +∆et)

.

4. Nonlinear filtering and prediction

As already noted in Section 2, the proposed general distribu-
tional representation allows us to represent the density of ob-
servable variables, conditional on the combination scheme, on
the predictions and on combination weights, as a nonlinear and
possibly non-Gaussian state-spacemodel. In the followingwe con-
sider a general state space representation and show how Sequen-
tial Monte Carlo methods can be used to approximate the filtering
and predictive densities.

Let Ft = σ({ys}s≤t) be the σ -algebra generated by the ob-
servable process and assume that the predictors ỹt = (ỹ′

1,t , . . . ,

ỹ′

K ,t)
′
∈ Y ⊂ RKL stem from a Ft−1-measurable stochastic process

associated with the predictive densities of the K different models
in the pool. Let wt = (w′

1,t , . . . ,w
′

K ,t)
′

∈ X ⊂ RKL be the vec-
tor of latent variables (i.e. the model weights) associated with ỹt
and θ ∈ Θ the parameter vector of the predictive model. Include
the parameter vector into the state vector and thus define the aug-
mented state vector zt = (wt , θ) ∈ X×Θ . The distributional state
space form of the density combination model is

yt |zt , ỹt ∼ p(yt |zt , ỹt) (15)

zt |zt−1, y1:t−1, ỹ1:t−1 ∼ p(zt |zt−1, y1:t−1, ỹ1:t−1) (16)

z0 ∼ p(z0). (17)

The hidden state predictive and filtering densities conditional on
the predictive variables ỹ1:t are

p(zt+1|y1:t , ỹ1:t)

=


X×Θ

p(zt+1|zt , y1:t , ỹ1:t)p(zt |y1:t , ỹ1:t)dzt (18)

p(zt+1|y1:t+1, ỹ1:t+1) ∝ p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t , ỹ1:t) (19)

which represent the optimal nonlinear filter (see Doucet et al.
(2001)). The marginal predictive density of the observable
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variables is then

p(yt+1|y1:t) =


X×Θ×Yt+1

p(yt+1|zt+1, ỹt+1)

× p(zt+1|y1:t , ỹ1:t)p(ỹ1:t+1|y1:t)dzt+1dỹ1:t+1

=


Y

p(yt+1|y1:t , ỹt+1)p(ỹt+1|y1:t)dỹt+1

where

p(yt+1|y1:t , ỹt+1) =


X×Θ×Yt

p(yt+1|zt+1, ỹt+1)p(zt+1|y1:t , ỹ1:t)

× p(ỹ1:t |y1:t−1)dzt+1dỹ1:t
is the conditional predictive density of the observable given the
predicted variables.

To construct an optimal nonlinear filter we have to implement
the exact update and prediction steps given above. As an analytical
solution of the general filtering and prediction problems is not
known for nonlinear state space models, we apply an optimal
numerical approximation method, that converges to the optimal
filter in Hilbert metric, in the total variation norm or in a weaker
distance suitable for random probability distributions (e.g., see
Legland and Oudjane (2004)). More specifically we consider a
sequential Monte Carlo (SMC) approach to filtering. See Doucet
et al. (2001) for an introduction to SMC and Creal (2009) for a
recent survey on SMC in economics. Let Ξt = {zit , ω

i
t}

N
i=1 be a

set of particles, then the basic SMC algorithm uses the particle
set to approximate the prediction and filtering densities with the
empirical prediction and filtering densities, which are defined as

pN(zt+1|y1:t , ỹ1:t) =

N
i=1

p(zt+1|zt , y1:t , ỹ1:t)ωi
tδzit
(zt) (20)

pN(zt+1|y1:t+1, ỹ1:t+1) =

N
i=1

ωi
t+1δzit+1

(zt+1) (21)

respectively, whereωi
t+1 ∝ ωi

tp(yt+1|zit+1, ỹt+1) and δx(y) denotes
the Dirac mass centered at x. The hidden state predictive density
can be used to approximate the observable prediction density as
follows

pN(yt+1|y1:t , ỹ1:t+1) =

N
i=1

ωi
tδyit+1

(yt+1) (22)

where yit+1 has been simulated from the measurement density
p(yt+1|zit+1, ỹt+1) independently for i = 1, . . . ,N . For the appli-
cations in the present paper we use a regularized version of the
SMC procedure given above (see Liu and West (2001) and Musso
et al. (2001)). Moreover we assume that the densities p(ỹs|y1:s−1)
are discrete

p(ỹs|y1:s−1) =

M
j=1

δỹjs
(ỹs).

This assumption does not alter the validity of our approach and
is mainly motivated by the forecasting practice, see literature on
model pooling, e.g. Jore et al. (2010). In fact, the predictions usu-
ally come from different models or sources. In some cases the
discrete prediction density is the result of a collection of point fore-
casts frommany subjects, such as surveys forecasts. In other cases
the discrete predictive density is the result of a Monte Carlo ap-
proximation of the predictive density (e.g. Importance Sampling
or Markov-Chain Monte Carlo approximations).

Under this assumption it is possible to approximate the
marginal predictive density by the following steps. First, draw M
independent values ỹj1:t+1, with j = 1, . . . ,M from the sequence of

predictive densities p(ỹs+1|y1:s), with s = 1, . . . , t . Secondly, apply
the SMC algorithm, conditionally on ỹj1:t+1, in order to generate
the particle set Ξ i,j

t = {zi,j1:t , ω
i,j
t }

N
i=1, with j = 1, . . . ,M . At the

last step, simulate yi,jt+1, i = 1, . . . ,N and j = 1, . . . ,M , from
p(yt+1|z

i,j
t+1, ỹ

j
t+1) and obtain the following empirical predictive

density

pM,N(yt+1|y1:t) =
1

MN

M
j=1

N
i=1

ω
i,j
t δyi,jt+1

(yt+1). (23)

5. Experiments using simulated data

5.1. Complete and incomplete model sets

Using simulated data we start to study the ability of the nonlin-
ear filtering procedure to select the true model, when the model
set is complete. Next, we study the behavior of both weights and
residuals for an incomplete model set. We do consider models
that are similar and belong to the class of Gaussian, linear au-
toregressive models. This class is widely studied in the forecasting
literature (e.g., see Clements and Hendry (1998) and Patton and
Timmermann (2012) for an extension to testing using inequal-
ity constraints and Hoogerheide et al. (2012) to include risk mea-
sures).

We run two sets of experiments. In the first set, we have
three linear stationary autoregressive (AR) models with different
unconditional means (UM), i.e.

M1 : y1t = 0.1 + 0.6y1t−1 + ε1t (24)
M2 : y2t = 0.3 + 0.2y2t−2 + ε2t (25)
M3 : y3t = 0.5 + 0.1y3t−1 + ε3t (26)

with εit
i.i.d.
∼ N (0, σ 2), t = 1, . . . , T , independent for i = 1, 2, 3

and assume yi0 = 0.25, i = 1, 2, 3 and σ = 0.05. Note that, as
we generate data from model M1, which is the true model, then
in this experiment we have two biased predictors, M2 and M3
and one unbiased predictor M1. Moreover, the three models differ
in terms of persistence patterns in the autoregression. The true
model has UM = 0.25 and the series is moderately autoregressive
with root 10/6. Model M2 has a different intercept, autoregressive
coefficient and lag structure. It has UM = 0.375 and the series
is more close to normal white noise with a root equal to

√
10/2.

Model M3 has the same lag structure as the true model, but
different intercept and autoregressive coefficients. It has UM =

0.56 and the series is really close to white noise: the root is 10.
In the second set of experiments, we consider three stationary

autoregressive processes with equal UM. The two processes have
almost the same roots. Specifically, let M1 be defined as in the
previous section and

M2 : y2t = 0.125 + 0.5y2t−2 + ε2t (27)
M3 : y3t = 0.2 + 0.2y3t−1 + ε3t (28)

with εit
i.i.d.
∼ N (0, σ 2) independent for i = 1, 2, 3. Model M1 has

UM = 0.25 and is moderately autoregressive, with unconditional
variance (UV) equal to 0.0039. Model M2 has UM = 0.25 and is
moderately autoregressive with UV = 0.0033. Finally, Model M3
has UM = 0.25 and is close to white noise with UV = 0.0026.
ModelsM2 andM3 have the sameUMas the one of the truemodel,
and they are similar to it in terms of unconditional variance. We
thus consider three unbiasedpredictorswhere twoare even almost
equal in persistence and close in terms of unconditional variance.

In the two sets of experiments, we generate a random sequence
y1t , t = 1, . . . , T , with T = 100, from M1 and set yt = y1t , assume
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Fig. 1. Filtered model probability weights, when the true model is M1 : y1t = 0.1 + 0.6y1t−1 + ε1t . Left: results for a complete model set in presence of biased predictors:

M2 : y2t = 0.3 + 0.2y2t−2 + ε2t and M3 : y3t = 0.5 + 0.1y3t−1 + ε3t , with εit
i.i.d.
∼ N (0, σ 2), t = 1, . . . , T . Right: results for a complete model set in presence of unbiased

predictors: M2 : y2t = 0.125 + 0.5y2t−2 + ε2t and M3 : y3t = 0.2 + 0.2y3t−1 + ε3t . Model weights (blue line) and 95% credibility region (gray area) for models 1, 2 and 3
(different rows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

that the model set is complete and apply our density combination
method. We specify the following combination scheme

p(yt |ỹt) = (2πσ 2)−
1
2 exp

−
1

2σ 2


yt −

3
i=1

wit ỹit

2
 (29)

where ỹit are forecast for yt generated at time t − 1 from the dif-
ferent models and ỹt = (ỹ1t , ỹ2t , ỹ3t)′. As regards the probabilities,
wit , for the model index i = 1, 2, 3, we assume that the vector
wt = (w1t , w2t , w3t)

′ is a multivariate logistic transform, ϕ, of the
latent process xt = (x1t , x2t , x3t)′ (see Section 3) and consider in-
dependent random walk processes for xit , i = 1, 2, 3 for updating.
We assume the initial value of theweights is known and set it equal
towit = 1/3, i = 1, 2, 3.

We apply a sequential Monte Carlo (SMC) approximation to
the filtering and predictive densities (see Appendix B) and find
optimal weights (see blue lines in the left column of Fig. 1) and
their credibility regions (gray areas in the same figure) for the three
models.

In the first experiment, after some iterations the weight of the
model M1 converges to one and the weights of the other models
converge to zero. The credibility region for w1t does not overlap
with the credibility regions of the other weights. This leads us
to conclude that it is credible that the weights are different in
our simulation experiment. Note that we use different random
sequences simulated from the true model and different random
numbers for the SMC algorithm and find the same results.

On the same simulated dataset we apply our optimal combina-
tion scheme to an incomplete set of models and find the optimal
weights presented in the left column of Fig. 2. The weight of the
model M2 converges to one, while M3 has weight converging to
zero. Note that for the incomplete set the variance of the residuals

is larger than the variance for the complete set (see left column of
Fig. 3).

In the second experiment the credibility regions of the model
weights are given in the right column of Fig. 1 for the complete
model set and in the right column of Fig. 2 for the incomplete
model set. Both experiments show that the weights have a high
variability. This leads us to conclude that the three models in the
complete set have the same weights. The same conclusion holds
true for the incomplete set.

Nevertheless, from the analysis of the residuals it is evident that
differences in the fit of the two model combinations exist. In fact,
for the incomplete set the residuals have a larger variance than the
residuals for the complete set (see right column of Fig. 3).

In conclusion, our simulation experiments enable us to
interpret the behavior of the weights and that of the residuals in
our density forecast combination approach. More specifically, the
high uncertainty level in the weights appears due to the presence
of predictors that are similar in terms of unconditional mean and
differ a little in terms of unconditional variance. The degree of
uncertainty in the residuals reduces when the true model is in the
set of combined models.

5.2. Different degrees of persistence

Next, we study the effect of varying the persistence parameter
on the results presented above. Further,we show that time-varying
weights with learning can account for differences in the uncondi-
tional predictive distribution of the different models. In our exper-
iments, the learning mechanism produces a better discrimination
between forecast models with the same unconditional mean, but
with different unconditional variance.

We consider models M2 and M3 as previously defined and
a sequence of models M1 parameterized by the persistence
parameterφ, withφ ∈ (0, 1). Themodel set includes the following
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Fig. 2. Filtered combination weights for the incomplete model set, in presence of biased (left): M2 : y2t = 0.3 + 0.2y2t−2 + ε2t and M3 : y3t = 0.5 + 0.1y3t−1 + ε3t , with

εit
i.i.d.
∼ N (0, σ 2), t = 1, . . . , T and unbiased (right): M2 : y2t = 0.125 + 0.5y2t−2 + ε2t , M3 : y3t = 0.2 + 0.2y3t−1 + ε3t , predictors. Model weights (blue line) and 95%

credibility region (gray area) for models 2 and 3 (different rows). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 3. Standard deviation of the combination residuals for complete (black line) and incomplete (gray line) model sets in presence of biased (left) and unbiased (right)
predictors.

models
M1 : y1t = 0.1 + φy1t−1 + ε1t (30)
M2 : y2t = 0.125 + 0.5y2t−2 + ε2t (31)
M3 : y3t = 0.5 + 0.2y3t−1 + ε3t (32)

with εit
i.i.d.
∼ N (0, σ 2), t = 1, . . . , T , independent for i = 1, 2, 3.

We set σ 2
= 0.0025. The unconditional mean, 0.1/(1 − φ), of

model M1 is equal to the one of model M2, for φ = 0.6, and
equal to the one of model M3, for φ = 0.84. For such values of the
persistence parameter, the UV σ 2/(1 − φ2) is 0.0030 and 0.0085
respectively, and is very close to the UV of models M2 and M3,
i.e. 0.0033 and 0.0075 respectively.

For different values of the persistence parameter and when φ
is far from 0.6 and 0.84, a combination approach without learning
(see filteredweights in the left columnof Fig. 4) is able to detect the
true model, i.e. model M1. In fact, the filtered weights are close to
one for M1 and to zero for the other models. However, in that part
of the parameter spacewhere these threemodels share similarities
in terms of predictive ability, i.e. φ = 0.6, 0.84, and have the same
UM, then the weights of model M1 are not close to one and the
weights for model M2 and M3 are not null.

We repeated the same experiments, while keeping fixed the
seed of the simulated series in order to reduce the variability of
the results, and apply a combination procedure with learning. The
results are given in the right column of Fig. 4. These show that a
learning mechanism, with parameters λ = 0.6 and τ = 10, is
able to discriminate betweenmodels which have the same UM but
differ in terms of UV. In fact, for all values of φ ∈ (0, 1) the weights
of model M1 are close to one.

5.3. Linear and nonlinear predictors

In the following simulation experiments we study the ability
of our combination approach to discriminate between an AR with
stochastic volatility (AR-SV) and an AR without SV, i.e.

M1 : y1t = 0.01 + 0.02y1t−1 + σtε1t (33)
M2 : y2t = 0.01 + 0.02y2t−1 + σε2t (34)

with εit
i.i.d.
∼ N (0, 1), t = 1, . . . , T , independent for i = 1, 2,

σ = 0.05 and σt = exp{ht/2}, where

ht = φ + αht−1 + γ ηt , ηt
i.i.d.
∼ N (0, 1)

and ηt is independent of ϵs, ∀s, t . We assume the true model is
M1 and consider two typical parameter settings (see Casarin and
Marin (2009)): low persistence in volatility, i.e. φ = 0.0025, γ =

0.1, α = 0.9 and high persistence in volatility, i.e. φ =

0.0025, γ = 0.01, α = 0.99, which can be usually found in finan-
cial applications. For each setting we simulate T = 1000 obser-
vations and apply the combination scheme presented in Section 2.
Fig. 5 shows the combination weights (black lines) and their high
credibility regions (colored areas) for the two parameter settings.

We expect that non-overlapping regions indicate a high
probability that the two weights take different values. Our
combination procedure is able to detect the true model assigning
to it a combination weight with mean equal to one. From a
comparison with the results of the previous experiments, notice
that the learning period is longer than for the case in which the
set includes only linear models. Finally, a comparison between the
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Fig. 4. Heatmap (gray area) of the filtered combinationweights (darker colors represent lowerweight values) over time and for different values of the persistence parameter

φ ∈ (0, 1) of the truemodelM1 : y1t = 0.1+φy1t−1 +ε1t with ε1t
i.i.d.
∼ N (0, σ 2). Left: results of the combination schemewithout learning. Right: results of the combination

scheme with learning in the weights dynamics.
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Fig. 5. Filtered combinationweights (dark lines) andhighprobability density region (colored areas) for the SV-ARmodel,M1 : y1t = 0.01+0.02y1t−1+σtε1t ,σt = exp{ht/2},

ht = φ+ αht−1 + γ ηt , ηt
i.i.d.
∼ N (0, 1) (solid line) and for the AR model M2 : y2t = 0.01+ 0.02y2t−1 + σε2t (dashed line), when assuming that the true model is M1 . Left:

low persistence in volatility, φ = 0.0025, γ = 0.1, α = 0.9. Right: high persistence in volatility, φ = 0.0025, γ = 0.01, α = 0.99.

two datasets shows that in the low-persistence setting the learning
about model weights is slower than for the high-persistence
setting.

5.4. Structural instability

We study the behavior of the model weights in the presence of
a structural break in the parameters of the data generating process.
We generate a random sample from the following autoregressive
model with breaks

yt = 0.1 + 0.3I(T0,T ](t)+

0.6 − 0.4I(T0,T ](t)


yt−1 + εt (35)

for t = 1, . . . , T with εt
i.i.d.
∼ N (0, σ 2), σ = 0.05, T0 = 50 and

T = 100 and where I(z)A takes a value 1 if z ∈ A and equals 0
otherwise. We apply our combination strategy to the following set
of prediction models

M1 : y1t = 0.1 + 0.6y1t−1 + ε1t (36)

M2 : y2t = 0.4 + 0.2y2t−1 + ε2t (37)
M3 : y3t = 0.9 + 0.1y3t−1 + ε3t (38)

with εit
i.i.d.
∼ N (0, σ 2) independent for i = 1, 2, 3 and assume

yi0 = 0.25, i = 1, 2, 3 and σ = 0.05. Note that the model set
is incomplete, but it includes two models, i.e. M1 and M2, that are
equivalent stochastic versions of the true model in the two parts,
t < T0 and t ≥ T0 respectively, of the sample. The results in Fig. 6
show that the combination strategy is successful in selecting with
probability close to one, model M1 for the first part of the sample
and model M2 in the second part.

6. Empirical applications

6.1. Comparing combination schemes

To shed light on the predictive ability of individual models,
we consider several evaluation statistics for point and density
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Fig. 6. Filtered combination weights for the three models: M1 : y1t = 0.1 + 0.6y1t−1 + ε1t , M2 : y2t = 0.4 + 0.2y2t−1 + ε2t and M3 : y3t = 0.9 + 0.1y3t−1 + ε3t ,

with εit
i.i.d.
∼ N (0, 0.052), independent for i = 1, 2, 3, when the parameters of the true model have a structural break at time T0 = 50, i.e. yt = 0.1 + 0.3I(T0,T ](t) +

0.6 − 0.4I(T0,T ](t)

yt−1 + εt , t = 1, . . . , T with T = 100 and εt

i.i.d.
∼ N (0, 0.052).

forecasts previously proposed in the literature. We compare point
forecasts in terms of Root Mean Square Prediction Errors (RMSPE)

RMSPEk =

 1
t∗

t
t=t

ek,t+1

where t∗ = t − t + 1, t and t denote the beginning and end of the
evaluation period, and ek,t+1 is the square prediction error ofmodel
k, and test for substantial differences between the AR benchmark
and themodel k by using the Clark andWest (2007) statistics (CW).
The null of the CW test is equal mean square prediction errors,
the one-side alternative is the superior predictive accuracy of the
model k.

We evaluate the predictive densities using two relative
measures. Firstly, we consider a Kullback–Leibler Information
Criterion (KLIC) based measure, utilizing the expected difference
in the Logarithmic Scores of the candidate forecast densities; see
for example Kitamura (2002), Mitchell and Hall (Mitchell and Hall,
2005; Hall and Mitchell, 2007), Amisano and Giacomini (2007)
and Kascha and Ravazzolo (2010). The KLIC chooses the model
that on average gives the higher probability to events that actually
occurred. Specifically, the KLIC distance between the true density
p(yt+1|y1:t) of a random variable yt+1 and some candidate density
p(ỹk,t+1|y1:t) obtained from model k is defined as

KLICk,t+1 =


p(yt+1|y1:t) ln

p(yt+1|y1:t)
p(ỹk,t+1|y1:t)

dyt+1

= Et [ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t)] (39)

where Et(·) = E(·|Ft) is the conditional expectation given
information set Ft at time t . An estimate can be obtained from the
average of the sample information, yt+1, . . . , yt+1, on p(yt+1|y1:t)
and p(ỹk,t+1|y1:t):

KLICk =
1
t∗

t
t=t

[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t)]. (40)

Even though we do not know the true density, we can still
compare different densities, p(ỹk,t+1|y1:t), k = 1, . . . , K . For the
comparison of two competing models, it is sufficient to consider
the Logarithmic Score (LS), which corresponds to the latter term in
the above sum,

LSk = −
1
t∗

t
t=t

ln p(ỹk,t+1|y1:t), (41)

for all k and to choose the model for which it is minimal, or, as we
report in our tables, its opposite is maximal.

Secondly, we also evaluate density forecasts based on the
continuous rank probability score (CRPS). The CRPS circumvents

some of the drawbacks of the LS, as the latter does not reward
values from the predictive density that are close to but not equal
to the realizations (see, e.g., Gneiting and Raftery (2007)) and it
is very sensitive to outliers; see Gneiting and Ranjan (2011) and
Groen et al. (2013) and Ravazzolo and Vahey (forthcoming) for
applications to inflation density forecasts. The CRPS for the model
k measures the average absolute distance between the empirical
cumulative distribution function (CDF) of yt+h, which is simply a
step function in yt+h, and the empirical CDF that is associated with
model k’s predictive density:

CRPSk,t+1 =

 
F(z)− I[yt+1,+∞)(z)

2 dz (42)

= Et |ỹt+1,k − yt+1| −
1
2

Et |ỹt+1,k − y′

t+1,k|, (43)

where F is the CDF from the predictive density p(ỹk,t+1|y1:t) of
model k and ỹt+1,k and ỹ′

t+1,k are independent random variables
with common sampling density equal to the posterior predictive
density p(ỹk,t+1|y1:t). Smaller CRPS values imply higher precision
and, as for the log score, we report in tables the average CRPSk for
each model k.

The distribution properties of a statistical test that compares
density accuracy performances, both measured in terms of LS and
CRPS, are not derived when working with nested models and
expanding the data window for parameter updating, such as in
our exercise. Therefore, following evidence in Clark andMcCracken
(2012) for point forecasts,we apply themethodology inGroen et al.
(2013) and test the null of equal finite sample forecast accuracy,
based on either LS and CRPS measures, versus the alternative that
a model outperformed the AR benchmark using the Harvey et al.
(1997) small sample correction of the Diebold and Mariano (1995)
and West (1996) statistic to standard normal critical values.2

Finally, following the idea in Welch and Goyal (2008) for the
cumulative squared prediction error difference, and in Kascha
and Ravazzolo (2010) for the cumulative log score difference, we
compute the cumulative rank probability score difference

CRPSDk,t+1 =

t
s=t

dk,s+1, (44)

where dk,s+1 = CRPSAR,s+1 − CRPSk,s+1. If CRPSDk,t+1 increases
at observation t + 1, this indicates that the alternative to the AR
benchmark has a lower CRPS at time t + 1.

2 We use the left tail p-values for the CRPS based test since we minimize CRPS
and the right tail for the LS based test since we maximize LS.
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Table 1
Forecast accuracy for the macro application.

GDP
AR ARMS TVPARSV VAR VARMS TVPVARSV BMA BMAopt TVW TVW(λ, τ )

RMSPE 0.881 0.907 0.850 0.875 1.001 0.868 0.852 0.844 0.649 0.648
CW 0.108 0.000 0.054 0.061 0.014 0.000 0.000 0.000 0.000
LS −1.320 −1.405 −1.185 −1.377 −1.362 −1.225 −1.211 −1.151 −1.129 −1.097
p-value 0.713 0.001 0.760 0.846 0.020 0.014 0.037 0.004 0.028
CRPS 0.478 0.472 0.445 0.468 0.523 0.452 0.445 0.447 0.328 0.328
p-value 0.342 0.000 0.103 0.984 0.010 0.008 0.000 0.000 0.000
Inflation

RMSPE 0.388 0.386 0.372 0.388 0.615 0.383 0.370 0.367 0.260 0.262
CW 0.034 0.001 0.172 0.077 0.053 0.003 0.001 0.000 0.000
LS −1.541 −1.381 −0.376 −1.277 −1.091 −0.609 −0.400 −0.385 0.252 0.223
p-value 0.213 0.147 0.201 0.349 0.160 0.152 0.122 0.058 0.057
CRPS 0.201 0.199 0.196 0.203 0.375 0.201 0.195 0.194 0.120 0.120
p-value 0.327 0.166 0.731 1.000 0.480 0.115 0.093 0.000 0.000

Note: AR, ARMS, TVPARSV, VAR, VARMS, TVPVARSV: individual models defined in Section 2. BMA: constant weights Bayesian Model Averaging. BMA: log pooling with
optimal log score weights. TVW: time-varying weights without learning. TVW(λ, τ ): time-varying weights with learning mechanism with smoothness parameter λ = 0.95
andwindow size τ = 9. RMSPE: Root mean square prediction error. CW: p-value of the Clark andWest (2007) test. LS: average Logarithmic Score over the evaluation period.
CRPS: cumulative rank probability score. LS p-value and CRPS p-value: Harvey et al. (1997) type of test for LS and CRPS differentials respectively.

6.2. GDP growth and PCE inflation

We consider K = 6 time series models to predict US GDP
growth and PCE inflation: an univariate autoregressive model of
order one (AR); a bivariate vector autoregressive model for GDP
and PCE, of order one (VAR); a two-state Markov-switching au-
toregressive model of order one (ARMS); a two-state Markov-
switching vector autoregressive model of order one for GDP and
inflation (VARMS); a time-varying autoregressive model with
stochastic volatility (TVPARSV); and a time-varying vector autore-
gressive model with stochastic volatility (TVPVARSV). Therefore,
our model set includes constant parameter univariate and mul-
tivariate specification; univariate and multivariate models with
discrete breaks (Markov-switching specifications); and univariate
and multivariate models with continuous breaks. See Appendix A
for further details.

First we evaluate the performance of the individual models for
forecasting US GDP growth and PCE inflation. Results in Table 1
indicate that the time-varying AR and VAR models with stochastic
volatility produce themost accurate point and density forecasts for
both variables. Clark and Ravazzolo (2012) find similar evidence in
larger VAR models applied to US and UK real-time data; see also
Korobilis (2013) and D’Agostino et al. (2013).

Secondly, we apply four combination schemes. The first one is
a Bayesian model averaging (BMA) approach similar to Jore et al.
(2010) and Hoogerheide et al. (2010). Following the notation in the
previous section, model predictions are combined by:

yt+1 = Wt+1ỹt+1. (45)
The combination is usually run independently for each series, l =

1, . . . , L. The weightsWt are computed as in (7) where xlk,t is equal
to the cumulative log score in (41). See, e.g., Hoogerheide et al.
(2010) for further details.

The second method (BMAopt ) follows the intuition in Hall
and Mitchell (2007) and the derivation in Geweke and Amisano
(2010b), and computes optimal log score weights. The method
maximizes the log score of Eq. (45) to computeWt+1:

t
t=t

log(Wt+1ỹt+1) (46)

subject to the restrictions that weights for each series l = 1, . . . , L
must be positive and sum to unity.3 See Geweke and Amisano
(2010b) for further details.

3 We present results using the multivariate approach, therefore the same weight
is given to each model for GDP and inflation forecasts. The multivariate joint

The other two methods are derived from our contribution in
equations from (1) to (3). We only combine the i-th predictive
densities of each predictor ỹk,t+1 of yt+1 in order to have a
prediction of the i-th element of yt+1 as in Eq. (5). One scheme
considers time-varying weights (TVW) with logistic-Gaussian
dynamics and without learning (see Eq. (10)); the other scheme
computes weights with learning (TVW(λ, τ )) as in (14). Weights
are estimated and predictive densities computed as in Section 4
using N = 1000 particles. Equal weights are used in all three
schemes for the first forecast 1970:Q1.4

The results of the comparison are given in Table 1. We ob-
serve that our combination schemes outperform both BMA and
single models. In particular, the TVW(λ, τ ), with smoothing factor
λ = 0.95 andwindow size τ = 9, on which wemainly focus in the
following analysis, outperforms the TVWmodel in terms of RMSPE,
LS and CRPS. See Section 5 for properties of suchweights in simula-
tion exercises. The values of λ and τ have been chosen on the basis
of the optimal RMSPE as discussed below. Gains are substantial and
up to 30%. The top panel of Fig. 10 shows that GDP density forecasts
are wider than the inflation forecasts and they track accurately the
realizations.5 When comparing differentials of CRPS as shown in
Fig. 7, for both GDP and inflation forecasting TVW(λ, τ ) outper-
forms the benchmark and other density combinations all over the
sample and not just for specific episodes. Graphs also show that the
two other combination schemes do not always outperform the AR
for inflation over the sample and optimal weights do not provide
more accurate forecasts.

The optimal values for the smoothing parameters and the
window size are evaluated via a grid search. We set the grid for
λ ∈ [0.1, 1]with step size 0.01 and for τ ∈ {1, 2, . . . , 20}with step
size 1 and on the GDP dataset, for each point of the grid, we iterate
10 times the SMCestimationprocedure and evaluate theRMSPE for
GDP.6 The level sets of the resulting approximated RMSPE surface

predictive densities for the univariate models are assumed to be diagonal. Out-of-
sample results are qualitatively similar when combining each series independently.
4 We also investigate a combination scheme based on equal weights but its

(point and density) forecast accuracy was always lower than that of both the best
individual model and the four schemes listed above. Results are available upon
request.
5 Unreported results of the Berkowitz (2001) test on PITs show that for GDP all

prediction densities are correctly specified, while for inflation only the densities
from our combination schemes are correctly specified.
6 Other accuracy measures, such as LS or CRPS, and multiple series evaluation is

also possible. We leave it for further research.
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GDP Inflation

Fig. 7. Cumulative rank probability score differential. Note: left: CRPSD of the TVW(λ, τ ) versus the AR model (black dashed line); CRPSD of the BMA versus the AR model
(red dashed line); CRPSD of the BMAopt versus the AR model (blue solid line) for forecasting GDP. Right: CRPSD as in left panel for forecasting inflation. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Optimal combination learning parameters. Note: root mean square
prediction error (RMSPE), in logarithmic scale, of the TVW(λ, τ ) scheme as a
function of λ and τ . We considered λ ∈ [0.1, 1] with step size 0.01 and τ ∈

{1, 2, . . . , 20} with step size 1. Dark gray areas indicate low RMSPE.

are given in Fig. 8. A look at the RMSPE contour reveals that in our
dataset, for each τ in the considered interval, the optimal value of
λ is 0.95. The analysis shows that the value of τ which gives the
lowest RMSPE is τ = 9.

Fig. 9 shows for the TVW(λ, τ ) scheme the evolution over
time of the filtered weights (the average and the quantiles at 5%
and 95%) conditionally on each one of the 1000 draws from the
predictive densities. The resulting empirical distribution allows us
to obtain an approximation of the predictive density accounting
for both model and parameter uncertainty. Figures show that the
weight uncertainty is enormous and neglecting it may lead to
misleading inference on themodel relevance. PCE average weights
(or model average probabilities) are more volatile and have wider
distributions than GDP average probabilities. The TVPARSV and
TVPVARSV models have higher probability and VARMS a lower
probability for both series, confirming CRPS ordering in Table 1.

The residual 95% HPD plotted in the second panel of Fig. 10
represents ameasure of incompleteness of themodel set. Above all
for GDP, the incompleteness is larger in the 1970’s, at the beginning
of the 1980’s and in the last part of the sample during the financial
crises, periods when zero does not belong to the HPD region. In
the central part of our sample period, often defined as the Great
Moderation period, standard statistical time-series models, such
as the set of our models, approximate accurately the data and the
incompleteness for both GDP and inflation is smaller; see Section 5
for a discussion of the incompleteness properties.

Finally, our combined predictive densities can be used to
nowcast recession probabilities at time t , such as those given in the
last row of Fig. 10. To define themwe follow a standard practice in
business cycle analysis and apply the following rule
Pr (yt−3 < yt−1, yt−2 < yt−1, yt < yt−1, yt+1 < yt−1|y1:t) (47)
where we use as yt the GDP monthly growth rate at time t . The
probability is approximated by applying a particle filter as follows

1
MN

M
j=1

N
i=1


I(−∞,yt−1)(yt−3)I(−∞,yt−1)(yt−2)

× I(−∞,yt−1)(yt)I(−∞,yt−1)(y
ij
t+1)



where yijt+1, i = 1, . . . ,N , j = 1, . . . ,M are drawn by SMC from
p(yt+1|y1:t). The estimated recessionprobabilities fit accurately the
US business cycle and have values higher than 0.5 in each of the
recession periods identified by the NBER. Anyway, probabilities
seem to lag at the beginning of the recessions, which might be due
to the use of GDP as a business cycle indicator. Eq. (47) could also
be extended to multi-step forecasts to investigate whether timing
can be improved.

6.3. Standard & Poor’s 500 returns

We use stock returns collected from the Livingston survey
and consider a nonparametric estimated density forecast as one
possible way to predict future stock returns, see the discussion in
Appendix A. We call these survey forecasts (SR). The alternative is
awhite noisemodel (WN).7 Thismodel assumes and thus forecasts
that log returns are normally distributed with mean and standard
deviation equal to the unconditional (up to time t for forecasting
at time t + 1) mean and standard deviation. WN is a standard
benchmark to forecast stock returns since it implies a randomwalk
assumption for prices, which is difficult to beat (see for example
Welch and Goyal (2008)). We apply our combination scheme from
(1) to (3) with time-varying weights (TVW) with logistic-Gaussian
dynamics and learning (see Eq. (10)).

Following the analysis in Hoogerheide et al. (2010) we evaluate
the statistical accuracy of point forecasts, survey forecasts and
combination schemes in terms of the root mean square error
(RMSPE), and in terms of the correctly predicted percentage of
sign (Sign Ratio) for the log percent stock index returns. We also
evaluate the statistical accuracy of the density forecasts in terms
of the LS and CRPS as in the previous section.

Moreover, as an investor is mainly interested in the economic
value of a forecasting model, we develop an active short-term
investment exercise, with an investment horizon of six months.
The investor’s portfolio consists of a stock index and risk free bonds
only.8

At the end of each period t , the investor chooses the fraction
αt+1 of her portfolio to be held in stocks for the period t + 1, based
on the forecast of the stock index return. We constrain αt+1 to be
in the [0, 1] interval, not allowing for short-sales or leveraging (see
Barberis (2000)). The investor maximizes a power utility function:

u(Rt+1) =
R1−γ
t+1

1 − γ
, γ > 1, (48)

where γ is the coefficient of relative risk aversion and Rt+1 is the
wealth at time t + 1, which is equal to
Rt+1 = Rt ((1 − αt+1) exp(yf ,t+1)

+αt+1 exp(yf ,t+1 + ỹt+1)), (49)

7 For the sake of brevity, we restrict this exercise to two individual models.
8 The risk free rate is approximated by transforming the monthly federal fund

rate in a six month rate, in the month the forecasts are produced. We collect the
federal fund rate from the Fred database at the Federal Reserve Bank of St Louis.
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Fig. 9. Time-varying weights with learning. Note: average filtered time-varying weights with learning (solid line) with 2.5% and 97.5% quantiles (gray area). Note that the
quintiles are obtained using the different draws from the predictive densities.

whereRt denotes the initialwealth, yf ,t+1 the 1-step ahead risk free
rate and ỹt+1 the 1-step ahead forecast of the stock index return
in excess of the risk free made at time t (see Dangl and Halling
(2012)).

When we set R0 = 1, the investor’s optimization problem is

max
αt+1∈[0,1]

Et


((1 − αt+1) exp(yf ,t+1)+ αt+1 exp(yf ,t+1 + ỹt+1))

1−γ

1 − γ


.

This expectation depends on the predictive density for the excess
returns, ỹt+1. Following notation in Section 4, denoting this density
as p(ỹt+1|y1:t), the investor solves the following problem:

max
αt+1∈[0,1]


u(Rt+1)p(ỹt+1|y1:t)dỹt+1. (50)

We approximate the integral in (50) by generating with the
SMC procedure MN equally weighted independent draws {ygt+1,

w
g
t+1}

MN
g=1 from the predictive density p(ỹt+1|y1:t), and then use a
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Fig. 10. Combination forecasts for the TVW(λ, τ ). Left column: GDP. Right column: inflation. Note: first: estimated mean (dashed line) and 2.5% and 97.5% quintiles (gray
area) of the marginal prediction density for yt+1 . Realizations for yt+1 in red solid line. Second: residual mean (solid line) and residual density (gray area) of the combination
scheme. Third: estimated recession probability (solid line). Vertical lines: NBER business cycle expansion and contraction dates.

numerical optimization method to find:

max
αt+1∈[0,1]

1
MN

MN
g=1


((1 − αt+1) exp(yf ,t+1)+ αt+1 exp(yf ,t+1 + ỹgt+1))

1−γ

1 − γ


. (51)

We consider an investor who can choose between different
forecast densities of the (excess) stock return yt+1 to solve the
optimal allocation problem described above. We include three
cases in the empirical analysis and assume the investor uses
alternatively the density from the WN individual model, the
empirical density from the Livingston Survey (SR) or finally a
density combination (DC) of the WN and SR densities. We apply
here the DC scheme used in the previous section.

We evaluate the different investment strategies by computing
the ex post annualized mean portfolio return, the annualized
standard deviation, the annualized Sharpe ratio and the total
utility. Utility levels are computed by substituting the realized
return of the portfolios at time t + 1 into (48). Total utility is then
obtained as the sumof u(Rt+1) across all t∗ = (t−t+1) investment
periods t = t, . . . , t , where the first investment decision ismade at
the end of period t . In order to compare thewealth provided at time
t +1 by two portfolios, say A and B, we compute themultiplicative
factor of wealth∆which equates their average utilities, that is

t
t=t

u(RA,t+1) =

t
t=t

u(RB,t+1/ exp(r)) (52)

where u(RA,t+1) and u(RB,t+1) are thewealth provided at time t+1
by portfolios A and B, respectively. FollowingWest et al. (1993), we
interpret ∆ as the maximum performance fee the investor would
be willing to pay to switch from strategy A to strategy B.9 We infer
the added value of strategies based on individual models and the
combination scheme by computing ∆ with respect to three static
benchmark strategies: holding stocks only (rs), holding a portfolio

9 See, for example, Fleming et al. (2001) for an application with stock returns.

consisting of 50% stocks and 50% bonds (rm), and holding bonds
only (rb).

Finally, transaction costs play a non-trivial role since the
portfolio weights in the active investment strategies change
every period (semester), and the portfolio must be rebalanced
accordingly. Rebalancing the portfolio at the beginning of month
t + 1 means that the weight invested in stocks is changed from
αt to αt+1. We assume that transaction costs amount to a fixed
percentage c on each traded dollar. As we assume that the initial
wealth R0 is equal to 1, transaction costs at time t + 1 are equal to

ct+1 = 2c|αt+1 − αt | (53)

where the multiplication by 2 follows from the fact that the
investor rebalances her investments in both stocks and bonds. The
net excess portfolio return is then given by yt+1 − ct+1. We apply
a scenario with transaction costs of c = 0.1%.

Panel A in Table 2 reports statistical forecast accuracy results.
The survey forecasts produce the most accurate point forecasts:
its RMSPE is the lowest. The survey is also the most precise in
terms of sign ratio. This seems to confirm evidence that survey
forecasts contain timing information. Evidence is, however, mixed
in terms of density forecasts: theWN has higher log score whether
the SR has the lowest CRPS; the highest log score is for our
combination scheme. Fig. 11 plots density forecasts given by the
three approaches. The density forecasts of the survey are too
narrow and therefore highly penalized from the LS statistics when
missing substantial drops in stock returns as at the beginning of
recession periods. The problem might be caused by the lack of
reliable answers during those periods. However, this assumption
cannot be easily investigated. The score for the WN is marginally
lower than for ourmodel combination. However the interval given
by the WN is often too large and indeed the realization never
exceeds the 2.5% and 97.5% percentiles.

Fig. 12 shows the combination weights with learning for the in-
dividual forecasts. The weights seem to converge to a {0, 1} opti-
mal solution, where the survey has all the weight towards the end
of the period even if the uncertainty is still substantial. Changing
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Table 2
Active portfolio performance.

γ = 4 γ = 6 γ = 8
WN SR DC WN SR DC WN SR DC

Panel A: statistical accuracy

RMSPE 12.62 11.23 11.54 – – – – – –
SIGN 0.692 0.718 0.692 – – – – – –
LS −3.976 −20.44 −3.880 – – – – – –
CRPS 6.816 6.181 6.188 – – – – – –
Panel B: economic analysis

Mean 5.500 7.492 7.228 4.986 7.698 6.964 4.712 7.603 6.204
St dev 14.50 15.93 14.41 10.62 15.62 10.91 8.059 15.40 8.254
SPR 0.111 0.226 0.232 0.103 0.244 0.282 0.102 0.241 0.280
Utility −12.53 −12.37 −12.19 −7.322 −7.770 −6.965 −5.045 −6.438 −4.787
rs 73.1 157.4 254.2 471.5 234.1 671.6 950.9 254.6 1101
rm −202.1 −117.8 −20.94 −114.3 −351.7 85.84 3.312 −693.0 153.5
rb −138.2 −53.9 43.03 −131.3 −368.8 68.79 −98.86 −795.1 51.32
Panel C: transaction costs

Mean 5.464 7.341 7.128 4.951 7.538 6.875 4.683 7.439 6.136
St dev 14.50 15.93 14.40 10.62 15.62 10.89 8.058 15.40 8.239
SPR 0.108 0.217 0.225 0.100 0.233 0.274 0.098 0.230 0.272
Utility −12.53 −12.40 −12.21 −7.329 −7.804 −6.982 −5.050 −6.484 −4.799
rs 69.8 142.2 244.3 468.1 216.6 662.2 948.1 234.0 1094
rm −205.5 −133.1 −31.05 −117.7 −369.2 76.36 0.603 −713.5 146.3
rb −141.2 −68.81 33.22 −134.5 −385.9 59.62 −101.2 −815.3 44.44

Note: In Panel A the root mean square prediction error (RMSPE), the correctly predicted sign ratio (SIGN) and the Logarithmic Score (LS) for the individual models and
combination schemes in forecasting the six-months-ahead S&P 500 index over the sample December 1990–June 2010. WN, SR and DC denote strategies based on excess
return forecasts from the White Noise model, the Livingston-based forecasts and our density combination scheme in Eqs. (1)–(3) and (10). In Panel B the annualized
percentage point average portfolio return and standard deviation, the annualized Sharpe ratio (SPR), the final value of the utility function, and the annualized return in
basis points that an investor is willing to give up to switch from the passive stock (s), mixed (m), or bond (b) strategy to the active strategies and short selling and leveraging
restrictions are given. In Panel C the same statistics as in Panel B are reported when transaction costs c = 10 basis points are assumed. The results are reported for three
different risk aversion coefficients γ = (4, 6, 8).

Fig. 11. Prediction densities for S&P 500. Note: the figure presents the (99%)
interval forecasts given by the White Noise benchmark model (WN), the survey
forecast (SR) and our density combination scheme (DC). The red solid line shows the
realized values for S&P 500 percent log returns, for each out-of-sample observation.

regulations, increased sophistication of instruments, technologi-
cal advances and recent global recessions have increased the value
added of survey forecasts, although forecast uncertainty must be
modeled carefully as survey forecasts often seem too confident.
When accounting for such drawback on the forecast uncertainty,
we might conclude that a survey should always be selected. We
add further analysis to show this is not always the best strategy.

Fig. 13 shows the contours for SR weight in our density com-
bination scheme for four different periods, 1992M12, 1997M12,
2008M6 and 2008M12. At the beginning of the sample (1992M12),

WN has most of the weight in the left tail and the SR in the right
tail. However, there is a shift after five years, with SR having most
of the mass in the left tail. The bottom panel shows the SR weight
before and after Lehman’s collapse. SR has most of the mass in the
left tail for the forecast made in 2008M6. The SR density forecast
results are not very accurate in 2008M12 (as Fig. 11 shows). Our
methodology increases WN weights in the left tail when the new
forecast is made. All four graphs reveal that weights have highly
nonlinear multimodal posterior distributions, in particular during
crisis periods, and therefore just selecting one of the two models
based on the mode or the median might not be optimal.

Results for the asset allocation exercise strengthen previous
statistical accuracy evidence. Panel B in Table 2 reports results for
three different risk aversion coefficients, γ = (4, 6, 8). The survey
forecasts give the highest mean portfolio returns in all three cases.
But they also provide the highest portfolio standard deviations.
Our combination scheme gives marginally lower returns, but
the standard deviation is substantially lower, resulting in higher
Sharpe Ratios and higher utility. In eight out of nine cases it
outperforms passive benchmark strategies, giving positive r fees.
The other forecast strategies outperform the passive strategy of
investing 100% of the portfolio in the stock market, but not the
mixed strategy and the strategy of investing 100% of the portfolio
in the risk free asset. Therefore, our nonlinear distributional
state-space predictive density gives the highest gain when the

Fig. 12. Combination weights for the S&P 500 forecasts.
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Fig. 13. SR weight contours. Note: the plots show the contours for the survey forecast (SR) weight in our density combination scheme (DC) for four different dates when
the forecasts were made.

Fig. 14. Utility value evolution. Note: left: power utility differentials of the three active investment strategies based on the predictive densities versus a passive strategy
to invest 50% on the risky asset and 50% on the risk free asset. Right: power utility differentials of the three active investment strategies based on the predictive densities
versus a passive strategy to invest 100% on the risk free asset. The risk aversion coefficient γ is set to 6.

utility function is also highly nonlinear, as is those of portfolio
investors. Results are robust to reasonable transaction costs.

Finally, Fig. 14 plots the differential between the utility values
given by the three active investment strategies, u(RB,t+1) B = SR,
WN, and DC, versus that of the passive strategies which invest all
in the risk free asset or 50% in the risky asset and the remainder in
the risk free asset. Results confirm intuitions given by the statistical
evaluation: the economic gains from our combination strategies
are larger during turbulent periods such as the 2001 and 2008
recessions. Relying on the SR individual models, which perform
more accurately during normal times, can reduce substantially
investors’ economic wealth.

7. Conclusion

This paper proposes a general combination approach with
time-varying weights for predictive densities and applies it to
models that are commonly used in macroeconomics and finance.
The proposed method is based on a distributional state-space
representation of the combination scheme and of the weights.
A Bayesian nonlinear filtering approach is proposed for the
estimation of the optimal weights. The distributional form and
the use of Sequential Monte Carlo allow us to extend the
combination strategies to a nonlinear and non-Gaussian context
and generalize the existing optimal weighting procedures based
on Kalman and Hamilton filters. Our methodology can cope with
incomplete models and different choices of the weight dynamics.
The effectiveness of the method is assessed first in simulation
exercises and then using US GDP and inflation forecast densities

generated by some well known forecasting models and, also,
through densities of returns of the S&P 500 generated by a survey
and a white noise model. In the application to macroeconomics,
nonlinear density combination schemeswith learning outperform,
in terms of root mean square prediction error; Kullback–Leibler
information criterion; and cumulative rank probability score, BMA
andBMAwith optimal log scoreweights. Specifically, for themacro
series we find that incompleteness of the models is relatively large
in the 1970’s, the beginning of the 1980’s and during the recent
financial crisis; while it is lower during the Great Moderation.
The predicted probabilities of recession accurately compare with
the NBER business cycle dating. Model weights have substantial
uncertainty attached. The application to the financial forecasts
shows that the proposed method allows one to combine forecast
densities of different natures, model-based and survey-based, and
that it gives the best predictive performance in terms of utility-
basedmeasures. Specifically, with respect to the returns of the S&P
500 serieswe find that an investment strategy using a combination
of predictions fromprofessional forecasters and from awhite noise
model put more weight on the white noise model in the beginning
of the 1990’s and switches to giving more weight to the left tail
of the professional forecasts during the start of the financial crisis
around 2008. Information on the complete predictive distribution
and not just basic moments turns out to be important in all cases
investigated.

We end this paper by listing some topics for further research.
The approach can be extended by using a richer set of models
and thus the challenge is the computational burden and the use of
approximate methods, such as the forgetting factor in the Kalman
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filter, see, e.g. Raftery et al. (2010), Koop and Korobilis (2012b)
and Koop and Korobilis (2012a) can also be considered. Finally,
parallelization techniques using, for instance, Graphical Processing
Units, are promising avenues for research.

Appendix A. Data

A.1. Gross domestic product and inflation

The first dataset focuses on US real GDP and US inflation.
We collect quarterly seasonally adjusted US GDP from 1960:Q1
to 2009:Q4 available from the US Department of Commerce,
Bureau of Economic Analysis (BEA). In a pseudo-real-time out-of-
sample forecasting exercise, we model and forecast the 1-step-
ahead quarterly growth rate, 100(log(GDPt)− log(GDPt−1)).10 For
inflation we consider the quarterly growth rate of the seasonally
adjusted PCE deflator, 100(log(PCEt)−log(PCEt−1)), from1960:Q1
to 2009:Q4, also collected from the BEA website.

In forecasting we use an initial in-sample period from 1960:Q1
to 1969:Q4 to obtain initial parameter estimates and we forecast
GDP and PCE growth figures for 1970:Q1. We then extend the
estimation sample with the value in 1970:Q1, re-estimating
parameters, and forecast the next value for 1970:Q2. By iterating
this procedure up to the last value in the sample we end up with a
total of 160 forecasts.

We consider K = 6 time series models which are widely ap-
plied to forecast macroeconomic variables. Two models are linear
specifications: a univariate autoregressivemodel of order one (AR)
and a bivariate vector autoregressive model for GDP and PCE, of
order one (VAR). We also apply four time-varying parameter spec-
ifications: a two-state Markov-switching autoregressive model of
order one (ARMS) and a two-state Markov-switching vector au-
toregressive model of order one for GDP and inflation (VARMS);
a time-varying autoregressive model with stochastic volatility
(TVPARSV) and a time-varying vector autoregressive model with
stochastic volatility (TVPVARSV). Therefore, ourmodel set includes
constant parameter univariate andmultivariate specification; uni-
variate and multivariate models with discrete breaks (Markov-
switching specifications); and univariate and multivariate models
with continuous breaks.

We estimate models using Bayesian inference with weak-
informative conjugate priors and produce 1-step-ahead predictive
density via direct simulations for AR and VAR, see, e.g. Koop
(2003) for details; we use the Gibbs sampling algorithm for ARMS
and VARMS, see, e.g. Geweke and Amisano (2010a) and TVPARSV
and TVPVARSV, see e.g., D’Agostino et al. (2013) and Cogley and
Sargent (2005) for details. For both classes of models we simulate
M = 1000 (independent) draws to approximate the predictive
likelihood of the GDP and inflation. Forecast combination practice
usually considers point forecasts, e.g. the median of the predictive
densities. The uncertainty around the point forecasts is, however,
very large and should be carefully estimated due to its key role
in decision making, see discussions in, e.g., Geweke (2010). The
aim of our paper is to propose a general combination method of
the predictive densities which can cope with the uncertainty and
increase the accuracy of both density and point forecasts.

A.2. Survey forecasts on Standard & Poor’s 500

Several papers have documented that survey expectations
have substantial forecasting power for macroeconomic variables.
For example, Thomas (1999) and Mehra (2002) show that

10 We do not consider data revisions and use data from the 2010:Q1 vintage.

surveys outperform simple time-series benchmarks for forecasting
inflation. Ang et al. (2007) make a comprehensive comparison of
several survey measures of inflation for the US with a wide set of
econometric models: time series ARIMAmodels, regressions using
real activity measures motivated by the Phillips curve, and term
structure models. Results indicate that surveys outperform these
methods in point forecasting inflation.

The demand for forecasts for accurate financial variables has
grown fast in recent years due to several reasons, such as
changing regulations, increased sophistication of instruments,
technological advances and recent global recessions. But compared
to macroeconomic applications, financial surveys are still rare and
difficult to access. Moreover, research on the properties of these
databases such as their forecasting power is almost absent. The
exceptions are few and relate mainly to interest rates. For example
Fama and Gibbons (1984) compare term structure forecasts with
the Livingston survey and to particular derivative products; Lanne
(2009) focuses on economic binary options on the change in US
non-farm payrolls.

We collect six-months-ahead forecasts for the Standard &
Poor’s 500 (S&P 500) stock price index from the Livingston sur-
vey.11 The Livingston Surveywas started in 1946 by the late colum-
nist Joseph Livingston and it is the oldest continuous survey of
economists’ expectations. The Federal Reserve Bank of Philadel-
phia took responsibility for the survey in 1990. The survey is con-
ducted twice a year, in June and December, and participants are
asked different questions depending on the variable of interest.
Questions about future movements of stock prices were proposed
to participants from the first investigation made by Livingston in
1946, but the definition of the variable and the base years have
changed several times. Since the responsibility passed to the Fed-
eral Reserve Bank of Philadelphia, questionnaires refer only to the
S&P 500. So the first six-months-ahead forecast we have, with a
small but reasonable number of answers and a coherent index, is
from December 1990 for June 1991.12 The last one is made in De-
cember 2009 for June 2010, for a total of 39 observations. The sur-
veys provide individual forecasts for the index value, we transform
them in percent log-returns using realized index values contained
in the survey database, that is ỹt+1,i = 100(log(p̃t+1,i) − log(pt))
with p̃t+1,i the forecast for the index value at time t+1 of individual
imade at time t and pt the value of the index at time t as reported
in the database and given to participants at the time that the fore-
cast is made. The left chart in Fig. 15 shows fan charts from the Liv-
ingston survey. The forecast density is constructed by grouping all
the responses at each period. The number of survey forecasts can
vary over time (black dotted line on the left chart); the survey par-
ticipants (units) may not respond and the unit identity can vary. A
problem of missing data can arise from both these situations. We
do not deal with the imputation problem because we are not in-
terested in the single agent forecast process. On the contrary, we
consider the survey as an unbalanced panel and estimate over time
an aggregate predictive density. We account for the uncertainty in
the empirical density by using a nonparametric kernel density es-
timator:

p(ỹt |y1:t−1) =
1

hNt

Nt
k=1

K(h−1(yt − ỹk,t)) (54)

on the survey forecasts ỹk,t , with k = 1, . . . ,Nt , where Nt denotes
the time-varying number of available forecasts. For the kernel K

11 See for data and documentation www.philadelphiafed.org/research-and-
data/real-time-center/livingston-survey/
12 The survey also contains twelve-months-ahead forecasts and from June 1992
one-month-ahead forecasts (just twice a year). We focus on six-months-ahead
forecasts, which is the database with more observations.

http://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey/
http://www.philadelphiafed.org/research-and-data/real-time-center/livingston-survey/
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Fig. 15. Livingston survey fan charts for the S&P 500. Left: survey data empirical densities. Right: nonparametric density estimates. Note: the shadowed areas (from dark
to light gray level) and the horizontal lines represent the 1%, 5%, 10%, 50%, 90%, 95% and 99% percentiles of the corresponding density forecast and of the sample distribution
respectively, the black dashed line the point forecast and the red solid line shows the realized values for S&P 500 percent log returns, for each out-of-sample observation.
The dotted black line shows the number of not-missing responses of the survey available at each date.

we consider a Gaussian probability density function with an opti-
mal bandwidth h (see for example Silverman (1986)). Our nonpara-
metric density estimator can be interpreted as a density forecast
combinationwith equalweights. For optimalweights in the case of
constant number of forecasts, see Sloughter et al. (2010). Zarnowitz
(1992) derives combined density by aggregating point and inter-
val forecasts for each density moment individually. Then, we sim-
ulateM = 1000 draws from the estimated density. The right chart
in Fig. 15 shows the nonparametric simulated forecast densities.
Left and right charts in Fig. 15 look similar, but the nonparametric
estimated forecasts span wider intervals as further uncertainties
are considered in their construction. Both parametric and nonpara-
metric estimates tend to understate the predictive uncertainty as
reported in Boero et al. (2008) and Lahiri and Sheng (2010).

The survey forecasts predict accurately some sharp upward
movements as in the second semester of 1995 or in the late 1990’s,
butmiss substantial drops during recession periods. The figure also
shows that the forecast densities have time-varying volatility and
fat-tails.

Appendix B. Combination schemes

B.1. Combining prediction density

Amore parsimoniousmodel than the one presented in Section 2
is given by

p(yt |Wt , ỹt) ∝ exp


−

1
2


yt −

K
k=1

wk,t ỹk,t

′

× Σ−1


yt −

K
k=1

wk,t ỹk,t


(55)

where wt = (w1,t , . . . , wK ,t) ∈ ∆[0,1]K . In this model all the
elements of the prediction yk,t given by the k-th model have the
same weight, while the weights may vary across the models.

Moreover, as an alternative to the Gaussian distribution, heavy-
tailed distributions could be used to account for extreme values
which are not captured by the pool of predictive densities.

Example 4 (Student-t Combination Scheme). In this scheme the
conditional density of the observable is

p(yt |Wt , ỹt) ∝


1 +

1
ν


yt − Wt ỹt

′
Σ−1 yt − Wt ỹt

−
ν+L
2

(56)

where Σ is the precision matrix and ν > 2 is the degrees-of-
freedom parameter. The scheme could be extended to asymmetric
Student-t as in Li et al. (2010). �

Example 5 (Mixture of Experts). Similarly to Jordan and Jacobs
(1994) and Huerta et al. (2003), the density of the observable is

p(yt |ỹt) =

K
k=1

p

Wk,t |y1:t−1, ỹ1:t−1


p

ỹk,t


(57)

where p

Wt |y1:t−1, ỹ1:t−1


is the mixture weight associated to

model k, which might be specified similarly to forms in Section 3.
Such an expression does not allow for the assumption that all

models are false and in the limit one of theweights will tend to one
as discussed in Geweke and Amisano (2010b). �

B.2. Weights

Wepresent two alternatives to the continuousweightswe have
discussed in 3.

Example 6 (Dirichlet Weights). The weight model based on the
multivariate logistic transform does not lead to an easy analytical
evaluation of the dependence structure between the weights. An
alternative specification of the weight dynamics makes use of the
Dirichlet distributionDK (α1, . . . , αK ) in order to define aDirichlet
autoregressive model.

xlt ∼ DKL

ηl1,tφ, . . . , η

l
KL−1,tφ, η

l
KL,tφ


(58)

where φ > 0 is the precision parameter and ηl
t = g(wl

t−1) with
wl

t ⊥ εl
s,∀s, t . Due to the property of theDirichlet randomvariable,

the multivariate transform of the latent process is the identity
function and it possible to setwl

t = xlt .
An advantage of using the Dirichlet model is that it is naturally

defined on the standard K -dimensional simplex and that the
conditional mean and variance and the covariance can be easily
calculated. See for example the seminal paper of Grunwald et al.
(1993) for a nonlinear time series model for data defined on the
standard simplex.

The main drawback in the use of this weighting distribution is
that, conditional on thepast, the correlation between theweights is
negative.Moreover it is not easy tomodel dependence between the
observable and the weights. A possible way would be to introduce
dependence through a common latent factor.We leave these issues
as topics for future research. �

Moreover, we consider weights with discontinuous dynamics.
In fact, in many applied contexts the discontinuity (e.g. due to
structural breaks) in the data generating process (DGP) calls for
a sudden change of the current combination of the prediction
densities.

Example 7 (Markov-Switching Weighting Schemes). We suggest
the use of Markov-switching processes to account for the
discontinuous dynamics of the weights. In fact, in many applied
contexts the discontinuity (e.g. due to structural breaks) in the
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data generating process calls for a sudden variation of the current
combination of the predictive densities.

We focus on Gaussian combination schemes with the learning
mechanismpresented in Section 2. Theweight specification strate-
gies, presented in the following can, however, be easily extended
tomore generalmodels to account for amore complex dependence
structure between theweights of different components for the var-
ious predictors yk,t .

Consider the following Markov-switching scheme:

p(yt |Wt ,Σt , ỹt) ∝ exp

−

1
2


yt − Wt ỹt

′
Σ−1

t


yt − Wt ỹt


(59)

Σt =

R−1
r=0

Dr I{r}(st) (60)

st ∼ P(st = i|st−1 = j) = pij, ∀i, j ∈ {0, . . . , R − 1} (61)

where Dr are positive define matrices. The l-th row of Wt is wl
t =

g(xlt) and is a function of the latent factors xlt and ξt = (ξ1,t ,
. . . , ξL,t)with the following dynamics

p(xt |xt−1,µt , y1:t−1, ỹ1:t−1)

∝ exp

−

1
2


∆xt − µt +∆et

′
Λ−1 ∆xt − µt +∆et


(62)

µt = (µ1,t , . . . , µKL2,t) (63)

µl,t =

Q−1
r=0

dl,r I{r}(ξl,t) (64)

ξl,t ∼ P(ξl,t = i|ξl,t−1 = j) = pij, (65)

∀i, j ∈ {0, . . . ,Q − 1}, with l = 1, . . . , KL2. We assume ξl,t ⊥

su ∀t, u and ξl,t ⊥ ξj,u ∀l ≠ j and ∀s, t .
It is possible to reduce the number of parameters to be esti-

mated by considering the following Markov-switching weighting
structure

p(yt |Wt , st , ỹt) ∝ exp


−

1
2


yt −

K
k=1

wk,t ⊙ ỹk,t

′

× Σ−1
st


yt −

K
k=1

wk,t ⊙ ỹk,t


(66)

Σst = Σψ(st)+ (1 − ψ(st))IL (67)

st ∼ P(st = i|st−1 = j) = pij, ∀i, j ∈ {0, 1} (68)

with wk,t = (w1
k,t , . . . , w

L
k,t) and ψ(st) : {0, 1} → [0, 1]. We let

ψ(0) = 1 and ψ(0) > ψ(1) as the identifiability constraint.
The dynamics of wl

t = (wl
1,t , . . . , w

l
K ,t)

′
= g(xlt) is driven by

the latent factors

p(xlt |x
l
t ,µ

l
t , y1:t−1, ỹ1:t−1)

∝ exp

−

1
2


∆xlt − µl

t +∆elt
′
Λ−1 ∆xlt − µl

t +∆elt


(69)

µl
t = µ0 + (µ1 − µ0)ξl,t (70)

ξl,t ∼ P(ξl,t = i|ξl,t−1 = j) = pij, ∀i, j ∈ {0, 1} (71)

with l = 1, . . . , L. We assume µk,0 < µk,1 for identifiability pur-
poses and ξl,t ⊥ su ∀t, u and ξl,t ⊥ ξj,u ∀l ≠ j and ∀s, t . �

Appendix C. Sequential Monte Carlo

As an example of the filtering procedure applied in our analysis,
we give in the following the pseudo-code of a simple sequential

Monte Carlo procedure adapted to the basic TVW model. Let xt
be the vector of transformed weights and assume, to simplify the
exposition, that the parameters are known. Then at time t with
t = 1, . . . , t , the SMC algorithm performs the following steps:

– Given {Ξ
j
t }

M
j=1, withΞ j

t = {xi,jt , ω
i,j
t }

N
i=1 and for j = 1, . . . ,M

• Generate ỹjt+1 from p(ỹjt+1|y1:t)
• For i = 1, . . . ,N

1. Generate xi,jt+1 from NK (x
i,j
t ,Λ)

2. Generate yi,jt+1 from p(yt+1|x
i,j
t+1, ỹ

1
t+1, . . . , ỹ

M
t+1)

3. Update the weights

ω̃
i,j
t+1 ∝ ω

i,j
t exp


−0.5


yt+1 −

K
k=1

w
i,j
k,t ỹ

j
k,t

′

× Σ−1


yt+1 −

K
k=1

w
i,j
k,t ỹ

j
k,t


wherewi,j

k,t = exp(xi,jk,t)/
K

k=1 exp{x
i,j
k,t}

• Evaluate the Effective Sample Size (ESS jt )
• Normalize the weights ωi,j

t+1 = ω̃
i,j
t+1/

N
i=1 ω̃

i,j
t+1 for i = 1,

. . . ,N
• If ESS jt ≤ κ then resample fromΞ

j
t .
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