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Abstract

The goal of many experiments is to inform the choice between different policies. How-
ever, standard experimental designs are geared toward point estimation and hypothesis
testing. We consider the problem of treatment assignment in an experiment with sev-
eral non-overlapping waves, where the goal is to choose among a set of possible policies
(treatments) for large-scale implementation. The optimal experimental design learns from
earlier waves and assigns more experimental units to the better-performing treatments in
later waves. We propose a computationally tractable approximation of the optimal de-
sign that we call “exploration sampling,” where assignment probabilities are an increasing
concave function of the posterior probabilities that each treatment is optimal. Theoret-
ical results and calibrated simulations demonstrate improvements in welfare, relative to
both non-adaptive designs as well as bandit algorithms. An application to selecting be-
tween different recruitment strategies for an agricultural extension service in Odisha, India
demonstrates practical feasibility.
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1 Introduction

The main objective of an academic researcher conducting a randomized controlled trial (RCT)
is typically to generate a point estimate of the treatment effect and a corresponding standard
error, in order to test the null hypothesis that the average effect equals 0. The research design
is chosen to maximize power for tests of this null, for example by assigning an equal number of
units to different treatments, and by stratifying the sample by pre-determined covariates (see
for instance Athey and Imbens 2017). Such RCTs are designed to answer the question “Does
this program have a significant effect?”

However, the objective of an NGO or government who considers conducting an experiment
to evaluate its programs is often slightly different: instead of estimating effect sizes, they are
interested in identifying and implementing the best out of several possible policies or policy
variants. In other words, they would like to answer questions such as “Which program will
have the largest effect?” We show that the objective of informing policy choice leads to design
recommendations that are qualitatively different from standard RCT recommendations.

We consider an experimental setting with multiple waves of experimental units, and multiple
treatments (policies). We assume that the outcome of interest is binary. At the beginning of
each wave, the number of units assigned to each treatment arm is decided. After conclusion
of the wave, prior beliefs about treatment effects are updated based on the observed success
rates (outcomes) in the different treatment arms. Then treatments are assigned for the next
wave, based on these updated beliefs. Once the experiment is concluded, one of the treatments
is picked for full-scale implementation. The objective is to maximize the average outcomes for
this full-scale implementation, net of the costs of treatment.

Our setting is closely related to the well-known “multi-armed bandit” problem (cf. Weber
et al., 1992; Bubeck and Cesa-Bianchi, 2012; Russo et al., 2018), but with the key difference that
there is no “exploitation” motive, and thus no exploitation-exploration tradeoff. This is because
in our setting the goal is to maximize outcomes after the experiment is concluded, but not
during the experiment. We believe that this case is practically relevant, since in many settings
indefinite experimentation is not feasible because of costs or political constraints. We focus on
the boundary case where the experimental sample is negligible relative to the population of
interest for conceptual clarity.

The policy choice problem described above defines a finite-horizon dynamic stochastic op-
timization problem. The actions in each wave (period) are the different possible treatment
assignments; the states are current beliefs over treatment effects; and transitions between states
from period to period are determined by experimental outcomes. In the final period, the action
consists in the choice of policy for implementation, after which welfare is realized as the average
per-unit outcome net of costs.

This optimization problem can in principle be solved analytically using backward induc-
tion. In realistic settings, however, finding exact solutions quickly becomes infeasible, due
to exploding state and action spaces. We therefore propose the following assignment algo-
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rithm, “exploration sampling,” which is a modified version of so-called Thompson sampling. In
Thompson sampling, the probability that a treatment d is assigned to a given experimental
unit arriving at t is equal to the posterior probability pdt (given outcomes up to t − 1) that
this treatment is in fact optimal. We modify this prescription in two ways. First, taking into
account that our setting has waves rather than sequential arrival of units, we do not indepen-
dently assign each unit to a treatment based on the probabilities pdt , but instead we assign a
corresponding share of each wave to the different treatments. Second, and more importantly,
we replace the assignment shares pdt by shares equal to qdt = St · pdt · (1 − pdt ), where St is a
normalizing constant. The shares qdt would arise if we ran conventional Thompson sampling
sequentially, within a given wave, but forced the algorithm to never assign the same treatment
twice in a row.

We show, using both simulations and theoretical results, that this modification improves
expected welfare. It avoids assigning more than 50% of the sample to the highest-performing
treatment, and in large samples it equalizes power for rejecting each of the sub-optimal treat-
ments. This behavior is optimal for the convergence rate of welfare, while standard Thompson
sampling is not, as discussed in Section 4.

In Section 5 we provide simulation evidence on the performance of exploration sampling
compared with alternative assignment algorithms, in particular a non-adaptive RCT (with equal
treatment arm size) and standard Thompson sampling. We evaluate these algorithms according
to the loss that is incurred from picking another than the highest-performing treatment option
with some probability. Our simulations use parameters and sample sizes calibrated to data from
three well-known published experiments in development economics (Ashraf et al., 2010; Bryan
et al., 2014; Cohen et al., 2015). Confirming theoretical predictions, exploration sampling
consistently performs better than standard Thompson sampling, which in turn outperforms
conventional non-adaptive designs. Furthermore, the gains from adaptive treatment assignment
are larger when the experiment is divided into more waves, for the same total sample size.

In Section 6, we demonstrate the practical feasibility of our proposal in an experiment that
uses the roll-out of a phone information campaign to rice farmers in Odisha to test different
enrollment protocols. Despite small differences between the effects of alternative treatments,
we are able to pin down the optimal treatment with high probability. As predicted by our
theory, pdt converges to 0 at at comparable speed for all the sub-optimal treatments.

The idea of adaptive treatment assignment is almost as old as the idea of randomized
experiments (Thompson, 1933). Adaptive experimental designs have been used for example in
clinical trials (Berry, 2006) and in the targeting of online advertisements (Russo et al., 2018),
but they have not yet entered the standard toolkit for RCTs in economics, see e.g. Duflo and
Banerjee (2017). Under some conditions, the optimal solution to the bandit problem can be
expressed in terms of choosing the arm corresponding to the highest “Gittins index,” cf. Weber
et al. (1992). In practice, most applications use heuristic algorithms rather than solving for the
optimal assignment, such as the Upper Confidence Bound algorithm (UCB), and Thompson
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sampling (Russo et al., 2018). A fairly recent literature characterizes the expected regret of
these algorithms, see for example Bubeck and Cesa-Bianchi (2012). Generalizations of the
bandit problem are discussed under the name of reinforcement learning in the machine learning
literature, Ghavamzadeh et al. (2015); Sutton and Barto (2018). A one-step approximation
to a variant of our dynamic optimization problem is considered in the literature on Bayesian
optimization and the knowledge gradient method, see Frazier (2018). Lastly, Russo (2016)
considers a problem closely related to ours, namely the problem of maximizing the probability
of picking the best treatment (rather than maximizing expected welfare). Our theoretical
analysis in Section 4 below draws on insights from this paper, and on the impossibility result
of Bubeck et al. (2011).

2 Setup

Consider a policymaker who wants to maximize the expected value of a binary outcome variable,
that is, a success rate. She has to choose between three or more different policies (treatments)
and she can use an experiment that proceeds in multiple waves (repeated cross-sections). At the
end of each experimental wave, outcomes are observed, and treatment assignment in subsequent
waves can be based on these observed outcomes. After the experiment concludes, a treatment is
chosen for large-scale implementation. Our goal is to derive optimal and approximately optimal
experimental designs for this setting.

Treatments and potential outcomes. The experiment takes place in waves t = 1, . . . , T .
Each wave t is a new random draw of Nt experimental units i = 1, . . . , Nt from the population
of interest (so that the waves are repeated cross-sections, and each unit is treated only once).

Each person or unit i in period t can receive one of k different treatments Dit ∈ {1, . . . , k},
resulting in a binary outcome Yit ∈ {0, 1}. Outcome Yit is determined by the potential outcome
equation Yit =

∑k
d=1 1(Di = d) · Y dit . This assumption implies in particular that there is no

interference, i.e., outcomes are not affected by the treatments others receive. Random sampling
means that the potential outcome vector (Y 1

it , . . . , Y
k
it ) for unit i in period t is an i.i.d. draw

from the population of interest. Each treatment d has a stationary average potential outcome
(also known as average structural function) θd = E[Y dit ].

Treatment assignment and state space during the experiment. Denote by ndt =∑
i 1(Dit = d) the number of units assigned to treatment d in wave t. The treatment assignment

in wave t is summarized by the vector nt = (n1t , . . . , n
k
t ) with

∑
d n

d
t = Nt. The experimenter’s

problem is to choose nt at the beginning of wave t.
Denote sdt =

∑
i 1(Dit = d, Yit = 1) the number of successes (outcome Yit = 1) among

those in treatment group d in wave t. The outcome of wave t can be summarized by the vector
st = (s1t , . . . , s

k
t ), where sdt ≤ ndt , collecting the number of successes in each of the treatment
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groups in wave t. These outcomes are observed at the end of wave t. Treatment assignment in
wave t+ 1 can depend on the outcomes of waves 1 to t, and on a randomization device.

Denote the cumulative versions of these terms by md
t =

∑
t′≤t n

d
t′ , r

d
t =

∑
t′≤t s

d
t′ , and

mt = (m1
t , . . . ,m

k
t ), rt = (r1t , . . . , r

k
t ). Thus, md

t is the total number of units assigned to
treatment d in waves 1 through t, and rdt is the total number of successes among these units.
With i.i.d. potential outcomes, all relevant information for the experimenter at the beginning
of period t+ 1 is summarized by mt and rt.

Policy choice and welfare. After wave T , a policy d∗ ∈ 1, . . . , k will be chosen and im-
plemented, with the objective of maximizing the expected average of the outcome Y for the
whole (remaining) population of interest, net of the unit cost cd of treatment. This objective,
per-capita expected social welfare of policy d at the end of the experiment, is given by

SW (d) = E[θd|mT , rT ]− cd. (2.1)

The optimal policy choice after the experiment is given by d∗ = argmax d SW (d). We will be
seeking experimental designs that maximize the expectation of welfare SW (d∗). This objective
function does not include the outcomes of participants in the experiment. Excluding the welfare
of participants from the optimization problem is justified if the number of experimental units
is small relative to the population of interest. A concern for the welfare of participants could
easily be added to our objective function, resulting in a hybrid setting between the bandit
problem and the setting considered here.

Bayesian prior and posterior. Under our assumptions, Y d has a Bernoulli distribution
with unknown parameter θd: Y d ∼ Ber(θd). We assume that the policymaker holds prior
belief θd ∼ Beta(αd0, β

d
0 ). The θd are mutually independent across d. A special case, and

the default for applications later in this paper, is the uniform prior θ ∼ Uniform
(
[0, 1]k

)
,

corresponding to αd0 = βd0 = 1 for all d.
After the outcomes for periods 1, . . . , t are realized, the posterior distribution is given by

θd|mt, rt ∼ Beta(αdt , β
d
t ), where αdt = αdt−1+sdt = αd0+rdt and βdt = βdt−1+ndt−sdt = βd0+md

t−rdt .
Moreover, expected social welfare from choosing d after period T , based on the expected success
rate for d, is

SW (d) =
αd

0+r
d
T

αd
0+β

d
0+m

d
T

− cd. (2.2)

From the perspective of the experimenter, the outcomes of wave t, after making the treat-
ment assignment decision nt, are subject to two sources of uncertainty: the uncertainty about
θ, given mt−1 and rt−1, and the sampling uncertainty over the distribution of st, given θ and
nt. The former is given by the Beta(αdt−1, β

d
t−1) distribution, the latter by Binomial distribu-

tions with parameters ndt and θd. Integrating out the unknown parameter θ, we get that the
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number of successes for each treatment in wave t follows a Beta-Binomial distribution,

P (sdt = s|mt−1, rt−1,nt) = E[P (sdt = s|θd, ndt )|mt−1, rt−1,nt]

=

(
ndt
s

)
B(αdt−1 + s, βdt−1 + ndt − s)

B(αdt−1, β
d
t−1)

, (2.3)

where B(·, ·) is the beta function.

3 Treatment assignment

3.1 Optimal assignment

The choice of treatment assignment nt for each t = 1, . . . , T is a dynamic stochastic optimization
problem that can be solved using backward induction. The state at the end of wave t − 1 is
given by (mt−1, rt−1), and the action in t is given by nt. The transition between states is
described by mt = mt−1 + nt, rt = rt−1 + st, where the success probabilities are given by
Equation (2.3).

Denote by Vt the value function after completion of wave t, that is, expected welfare as-
suming that all future treatment assignment decisions will be optimal, and that the optimal
policy is implemented after the experiment. Vt is a function of the state (mt, rt). After the
experiment is concluded, the value function is given by expected welfare for the optimal choice
of policy, based on current beliefs:

VT (mT , rT ) = max
d

(
E[θd|mT , sT ]− cd

)
= max

d

(
αd

0+r
d
T

αd
0+β

d
0+m

d
T

− cd
)
. (3.1)

Denote by Ut the action value function, given by expected welfare at the beginning of wave t
when treatment assignment is nt, assuming all future assignment decisions will be optimal:

Ut(mt−1, rt−1,nt)=
∑

s:s≤nt

P (st = s |mt−1, rt−1,nt)Vt (mt−1+ nt, rt−1+ s) , (3.2)

where the probabilities for each vector of successes are given by Equation (2.3). The period t
value function and the optimal treatment assignment satisfy

Vt−1(mt−1, rt−1) = max
nt:

∑
d n

d
t≤Nt

Ut(mt−1, rt−1,nt)

n∗t (mt−1, rt−1) = argmax
nt:

∑
d n

d
t≤Nt

Ut(mt−1, rt−1,nt). (3.3)

Together, these equations define a solution for the experimental design problem.
In Appendix A.2, we discuss optimal designs for a simple numerical example. In this example

(i) adaptivity with two equal-sized waves dominates alternative splits, and in particular non-
adaptive assignments, and (ii) the optimal treatment assignment in wave 2 assigns more units
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to those treatments that performed better in wave 1.

Computational cost of optimal solutions One can solve for the optimal treatment as-
signment using dynamic programming. This involves brute-force enumeration of all possible
outcomes and actions. With larger sample sizes Mt =

∑
t′≤tNt′ and a greater number of treat-

ments k, however, solving for the optimal assignment quickly becomes infeasible, motivating
our simpler exploration sampling approach below.

The most time-efficient approach for dynamic programming uses full memoization, where
the value function is calculated and stored for every possible state. At the end of wave t there
are

(
Mt+k−1
k−1

)
= O(Mk−1

t ) possible values mt, and for each mt there are
∏
dm

d
t = O(Mk

t )

possible values of rt, so that the number of possible states at the end of wave t is of order
O(M2k−1

t ).
Suppose t < T . Then for each of these states we need to calculate the value function,

maximizing over the expected action value for each possible action nt+1, where the expectation
is over each possible realization of st+1. There are

(
Nt+1+k−1

k−1
)

= O(Nk−1
t+1 ) possible actions

nt, and
∏
d n

d
t+1 = O(Nk

t+1) possible realizations of st+1 for each nt+1, so that the required
computation time for Vt at a given state is of order O(N2k−1

t+1 ). For t = T , we only need to
maximize over k possible actions (policy choices).

Collecting terms, we get that the computational time complexity for dynamic programming
with full memoization in this setting is of order

T−1∑
t=1

O
(
(MtNt+1)2k−1

)
+O(M2k−1

T k), (3.4)

and the memory complexity is of order
∑T
t=1O

(
M2k−1
t

)
.

3.2 Thompson sampling

An alternative to full optimization is the use of simpler heuristic algorithms. Such algorithms
are widely used for bandit problems, for instance in the placement of online ads. One of the
most popular (and oldest) such algorithms is so-called Thompson sampling, originally proposed
by Thompson (1933) in the context of clinical trials.

Consider the special case of our setting where each wave is of size 1, so that units arrive
sequentially (and we can drop the subscript i). In each period t, assign treatment d with
probability equal to the posterior probability, given past outcomes, that it is in fact the optimal
treatment,

pdt = P (Dt = d|mt−1, rt−1) = P

(
d = argmax

d′
(θd
′
− cd

′
)|mt−1, rt−1

)
. (3.5)

This prescription is easy to implement, by sampling just one draw θ̂t from the posterior given
mt−1 and rt−1, and setting Dt = argmax d(θ̂

d
t −cd). In the context of the Beta-Binomial model
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Figure 3.1: Illustration of exploration sampling probabilities
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Notes: This figure shows examples of the mapping from the vector of Thompson probabilities pt to the vector
of exploration sampling probabilities qt.

outlined above, θ̂t is sampled from its Beta posterior. Thompson sampling can also be applied
in much more general settings, with more complicated policy spaces, prior distributions, and
likelihoods. An excellent overview can be found in Russo et al. (2018).

3.3 Exploration sampling

We can improve on standard Thompson sampling in our context. We propose the following
two modifications. The first modification is designed to reduce randomness in the treatment
assignment. Rather than drawing each Dit independently from the distribution (p1t , . . . , p

k
t ),

we assign a non-random share pdt (up to required rounding) of observations in wave t to treat-
ment d.1 We will refer to treatment assignment based on this modification alone as expected
Thompson sampling.

The second modification replaces the assignment probabilities (p1t , . . . , p
k
t ) with the fol-

lowing transformed probabilities:

qdt = St · pdt · (1− pdt ), St = 1∑
d p

d
t ·(1−pdt )

. (3.6)

We analyze this modification and discuss its justification in Section 4 below. We will refer to
treatment assignment based on both of these modifications as exploration sampling. Figure 3.1
plots a few examples for the mapping from the vector of probabilities pt to the transformed
vector qt. It shows that exploration sampling shifts weight away from the best performing
option to its competitors.

1The remainder after rounding is still assigned randomly, so that expected shares remain equal to pdt .
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4 Analysis of exploration sampling

In this section, we characterize the behavior of exploration sampling. We first review results
from the literature on the behavior of Thompson sampling and other bandit algorithms. Such
algorithms assign a lot of observations to the best-performing treatment. This is good for the
welfare of the experimental participants, but is not optimal for the ability of a policymaker to
distinguish the best treatment after the experiment. We then provide a heuristic motivation for
our proposal: Exploration sampling arises if we force Thompson sampling to never assign the
same treatment twice in a row, thereby improving power for comparisons of relevant alterna-
tives. We finally present our key result, providing a theoretical characterization of exploration
sampling, and show that it is (constrained) rate optimal for our objective.

4.1 The large sample behavior of Thompson sampling

In many bandit problems, the goal is to minimize average in-sample regret 1
T

∑T
t=1 ∆Dt , where

∆d = maxd′ θ
d′ −θd. Agrawal and Goyal (2012) (Theorem 2) have shown that in-sample regret

for Thompson sampling (in the binary outcome setting, with sequential arrival) satisfies the
bound

lim
T→∞

E

[∑T
t=1 ∆Dt

log T

]
≤

∑
d6=d∗

1

(∆d)2

2

. (4.1)

As first shown by Lai and Robbins (1985), no adaptive experimental design can do better
than this log T rate; the proof of this lower bound is reviewed in Section 2.3 of Bubeck and
Cesa-Bianchi (2012). This result implies that Thompson sampling only assigns a share of units
of order log(T )/T to treatments other than the optimal treatment, so that we effectively stop
learning about the performance of suboptimal treatments very quickly. Because of this behavior,
Thompson sampling is a good choice for maximizing in-sample welfare, but its benefits for ex-
post policy choice are limited. Bubeck et al. (2011) formalize this intuition. Their Theorem 1
implies that any algorithm that achieves a log(T )/T rate for in-sample regret, such as Thompson
sampling, can at most achieve a polynomial rate of convergence to 0 for the probability of
choosing a sub-optimal treatment after the experiment, and thus for our objective.

This behavior stands in contrast to algorithms which assign a fixed, non-zero share of
observations to each treatment, such as conventional (non-adaptive) designs. Such algorithms,
and more generally algorithms that converge to non-zero shares, achieve an exponential rate of
convergence. We prove below that exploration sampling achieves the best possible exponential
rate of convergence, subject to the constraint that half the observations end up assigned to the
best treatment; it achieves in particular a better rate than non-adaptive assignment.
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4.2 Alternating Thompson

As argued above, Thompson sampling assigns the best performing treatment too often for our
objective. We can improve performance by assigning both the best performing treatment and
its close competitors with comparable frequency, in order to maximize power for picking the
best treatment eventually. This suggests the following alternating Thompson algorithm, which
leads to a heuristic motivation for our exploration sampling procedure.

Suppose that within a given wave we sequentially assign treatments based on the Thompson
probabilities p, except that we never assign the same treatment twice in a row. This algorithm
defines a Markov chain for the sequence of assigned treatments. The probability of transitioning
from treatment d′ to treatment d 6= d′ is given by pd

1−pd′ . This Markov chain has a stationary
distribution q, where the stationary distribution satisfies

qd =
∑
d′ 6=d

qd
′ pd

1−pd′ ∀ d ∈ {1, . . . , k}. (4.2)

Moreover, by the mean ergodic theorem, the assignment shares of the “alternating” algorithm
converge to the stationary distribution characterized by Equation (4.2). We can solve explicitly
for q. Denote S =

∑
d

qd

1−pd . Then Equation 4.2 can be rewritten as qd

pd
= S − qd

1−pd , and some
algebra yields qd = S · pd · (1− pd) and S = 1∑

d p
d·(1−pd) . This implies that for large wave sizes

the alternating Thompson algorithm assigns the same share of observations to each treatment
as our exploration algorithm, as defined in Equation (3.6).

4.3 The large sample behavior of exploration sampling

We now turn to our main characterization of exploration sampling. The proof of the following
Theorem builds on Russo (2016), and in particular on Proposition 7, as well as Lemma 12
through 14 in Appendix G.1 therein.2 Our theorem characterizes the behavior of exploration
sampling in settings with many waves and fixed wave sizes.

Theorem 1 Consider the setting of Section 2 with fixed wave size Nt = N ≥ 1, and the
exploration algorithm as defined in Section 3.3. Assume that the optimal policy argmax d θ

d is
unique. As T →∞, exploration assignment satisfies the following:

1. The share of observations assigned to the best treatment converges to 1/2.

2. All the other treatments d are assigned to a share of the sample which converges to a
non-random share q̄d.

2Our setting differs from that of Russo (2016) since (1) we are interested in maximizing expected welfare
rather than the probability of picking the best treatment, (2) our algorithm does not require tuning parameters,
in contrast to the algorithms proposed by Russo (2016), and (3) our algorithm is better suited for the setting
with waves, since it does not assign all units to the top two treatments in each period.
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3. q̄d is such that the posterior probability of d being optimal goes to 0 at the same exponential
rate for all sub-optimal treatments.

4. No other assignment algorithm for which statement 1 holds has average regret going to 0

at a faster rate than exploration sampling.

The proof of this theorem can be found in Appendix A.1; we proceed in several steps. First,
we show that each treatment is assigned infinitely often. By a basic consistency result, this
implies that pdT goes to 1 for the optimal treatment and to 0 for all other treatments. Claim 1
then follows from the definition of exploration sampling. Second, we show claims 2 and 3 by
contradiction. Suppose pdt goes to 0 at a faster rate for any one of the sub-optimal treatments d.
Then exploration sampling would effectively stop assigning this treatment d. This in turn allows
the other sub-optimal treatments to “catch up.” Lastly, efficiency (claim 4) holds because the
algorithm balances the rate of convergence of posterior probabilities (or equivalently, of power)
across treatments. That this is optimal follows from decreasing marginal returns of additional
observations, for each treatment arm, in large samples.

5 Calibrated simulations

We next present simulation evidence on the performance of alternative treatment assignment
algorithms, using parameter vectors and sample sizes calibrated to data from published exper-
iments in development economics. The purpose of calibration is to “tie our hands” in choosing
designs for our simulations. We opted for simplicity, rather than realism, in the assumptions
driving our calibrations.

Experiments from the literature We use data from the experiments discussed in Ashraf
et al. (2010), Bryan et al. (2014), and Cohen et al. (2015). For these experiments, well-
documented data is readily available, they consider multiple treatments, and the outcome is
binary. Our simulations use sample sizes equal to the original experiments. Appendix A.3 sum-
marizes the context of these experiments. For simplicity, we ignore clustering in the sampling
and treatment assignment of the original experiments. We assume that the policymaker’s goal
is to maximize the average of the measured outcome (which was not necessarily the goal of the
original experiments).

Figure 5.1 shows the average outcomes across treatment arms for each of the three experi-
ments. We set the “true” parameter vectors θ equal to these average outcomes for the purpose of
our simulations. The vectors θ show interesting differences across the three experiments, which
will be relevant for understanding the results of our simulations. For Ashraf et al. (2010), there
are roughly evenly spaced average outcomes. This is a setting where it is comparatively easy to
statistically detect which treatments are performing better, so that we would expect benefits of
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Figure 5.1: Average outcomes across treatment arms in published experiments
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adaptation even for moderate sample sizes. For Bryan et al. (2014), there are two worse treat-
ments (these two treatments are indistinguishable in Figure 5.1), and two better treatments
that are very close. In this setting, it is easy to detect which two treatments perform better.
Among these two, however, it takes a large amount of information to figure out which is the
best. The returns to finding the best treatment among the top two, on the other hand, are not
very large. For Cohen et al. (2015), the top six treatments are again roughly evenly spaced (the
second and third treatment from the bottom are again indistinguishable in Figure 5.1). This
setting is similar to Ashraf et al. (2010), except that the best treatments are closer, and thus
harder to distinguish.

Algorithms We compare four different algorithms. The first algorithm, which serves as a
benchmark, is non-adaptive and assigns an equal share of units to each of the treatment arms.
The second algorithm is standard Thompson sampling. The third algorithm, expected Thomp-
son, assigns a non-random share of units in each wave based on the Thompson probabilities.
The fourth algorithm, our preferred approach, is exploration sampling as described in Section
3.3.

Performance criteria We evaluate the performance of these algorithms using the distribu-
tion of regret across 100,000 simulation draws. Regret is given by the difference between the
welfare generated by the optimal treatment, and welfare for the policy d∗ with the highest
posterior mean after conclusion of the experiment. That is,

d∗ = argmax
d

E[θd|mT , rT ], regret = ∆d∗ = max
d

θd − θd
∗
.

For each of our simulations, the vector θ, and in particular maxd θ
d, is fixed across simulation

draws, so that average regret is just a convenient renormalization of the average of welfare θd
∗
.

We also report the share among our simulation draws for which the optimal treatment was
chosen after conclusion of the experiment, that is for which regret equals zero.

Simulation results Tables 1 through 3 show our simulation results. Appendix A.3 has
figures providing further detail. The tables show the average of regret, and the probability
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that the optimal policy is chosen (corresponding to regret = 0) for each of the four algorithms
considered, and for varying numbers of waves, holding total sample size constant.

There are several noticeable patterns across the simulations. First, exploration sampling
consistently performs better than expected Thompson sampling, which is very close in perfor-
mance to Thompson sampling, and all of these outperform non-adaptive assignment. Second,
adaptive designs with more waves consistently outperform designs with fewer waves (for the
same total sample size). Third, the gains from adaptive designs in terms of average regret are
largest in the application to Ashraf et al. (2010), followed by Cohen et al. (2015). The gains for
Bryan et al. (2014) are somewhat smaller. The gains in the probability of choosing the optimal
treatment are even more pronounced.

The figures in Appendix A.3 also show that the probability of choosing the best treatment is
strictly larger than under non-adaptive assignment, for every setting considered. More generally,
in our simulations the distribution of regret under exploration sampling first-order stochastically
dominates the corresponding distribution under non-adaptive assignment. Lastly, for Ashraf
et al. (2010) and Bryan et al. (2014), both approaches pick one of the best two treatments with
high probability. For Cohen et al. (2015), the distribution is more dispersed, owing to smaller
treatment differences.

6 Implementation in the field

Precision Agriculture for Development (PAD) is working with the government of Odisha, In-
dia, to provide a phone-based personalized agricultural extension service to rice farmers. We
designed an experiment to help PAD choose among a variety of different call methods to enroll
farmers.3 The outcome is a binary variable describing successful call completion: It equals
one if the call recipient answered five questions asked during the call (which enables processing
by PAD). PAD tested six treatment arms that combined automated voice calls either in the
morning or evening with possible text message alerts sent up to 24 hours in advance, cf. Table
4.

The sample was selected from a list of phone numbers provided by the government. PAD
set aside a batch of 10,000 valid numbers that are not on the Indian “do-not-disturb” list and
randomly selected waves of 600 phone numbers for testing. Starting on June 3 2019, a new
experimental wave was started every other day and completed the next day.4

We used exploration sampling as described in Section 3.3. The success rate of each treatment
arm was estimated starting with a uniform prior over θ in order to determine the assignment
frequencies for each consecutive wave.

3The pre-analysis plan for this experiment was registered at
https://www.socialscienceregistry.org/trials/4263.
The R-code used for implementation can be found at
https://github.com/maxkasy/Precision-Agriculture-for-Development.

4The schedule got delayed by one day starting June 17 due to internet connectivity issues in Odisha.
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Table 1: Ashraf, Berry, and Shapiro (2010)
Statistic 2 waves 4 waves 10 waves
Average regret

exploration sampling 0.0017 0.0010 0.0008
expected Thompson 0.0022 0.0014 0.0013
Thompson 0.0021 0.0014 0.0013
non-adaptive 0.0051 0.0050 0.0051

Share optimal
exploration sampling 0.978 0.987 0.989
expected Thompson 0.970 0.982 0.982
Thompson 0.972 0.982 0.982
non-adaptive 0.934 0.935 0.933

Units per wave 502 251 100

Table 2: Bryan, Chowdhury, and Mobarak (2014)
Statistic 2 waves 4 waves 10 waves
Average regret

exploration sampling 0.0044 0.0041 0.0039
expected Thompson 0.0047 0.0044 0.0043
Thompson 0.0047 0.0044 0.0043
non-adaptive 0.0055 0.0054 0.0054

Share optimal
exploration sampling 0.794 0.811 0.821
expected Thompson 0.780 0.797 0.800
Thompson 0.781 0.798 0.801
non-adaptive 0.747 0.750 0.749

Units per wave 935 467 187

Table 3: Cohen, Dupas, and Schaner (2015)
Statistic 2 waves 4 waves 10 waves
Average regret

exploration sampling 0.0069 0.0063 0.0060
expected Thompson 0.0074 0.0066 0.0061
Thompson 0.0074 0.0065 0.0062
non-adaptive 0.0087 0.0086 0.0086

Share optimal
exploration sampling 0.569 0.585 0.592
expected Thompson 0.560 0.579 0.590
Thompson 0.563 0.584 0.590
non-adaptive 0.525 0.526 0.528

Units per wave 1080 540 216

Notes: Average regret and share optimal are averages across 100,000 simulation draws. The parameters θ are
set equal to the average outcomes for each treatment arm in the original experiment and are constant across
draws. Total sample size across waves is equal to the original.
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Findings Table 4 tabulates the cumulative data of our experiment, while figure 6.1 plots the
assignment shares over time. The figure shows that one treatment is assigned the most units
from wave 2 onwards, but some closely competing treatments get high share of observations
especially in early waves. The number of observations per wave assigned to each of the treat-
ments did stabilize towards later waves, as predicted by our characterization of exploration
sampling in Theorem 1. Table 5 shows the posterior expectation of the average success rates
θd, the posterior standard deviation, and the posterior probability pdT that each treatment is
optimal.

Calling farmers at 10am, after sending a text message an hour ahead of time, is with over 75
percent probability the treatment with the greatest success rate, estimated to be 19.3 percent.
Across treatments, higher success rates are associated with a higher number of observations, and
correspondingly, the posterior standard deviation is smallest for the treatments that performed
best. This holds by design for the exploration sampling algorithm. Cumulatively, nearly 40
percent of farmers received the most successful type of call, whereas under four percent received
the least successful call (at 6:30pm without a text message alert). Based on the posterior
estimated success rates, exploration sampling not only improved learning, but also increased
overall success rates within the experiment (18.04%) compared to a standard design with equal
assignment to treatment arms (where the estimated success rate would be 17.15%).

Table 4: Cumulative treatment assignment and number and share of successes in the experi-
ment, 10,000 observations.

Total Total Share of
Treatment observations successes successes
No SMS, 10am call 903 145 0.161
SMS 1h before, 10am call 3931 757 0.193
SMS 24h before, 10am call 2234 400 0.179
No SMS, 6:30pm call 366 53 0.145
SMS 1h before, 6:30pm call 1081 182 0.168
SMS 24h before, 6:30 pm call 1485 267 0.180

Table 5: Posterior mean and standard deviation of the average success rate for each treatment,
and probability that the treatment is optimal.

Treatment Mean St. dev. Probability optimal
No SMS, 10am call 0.161 0.012 0.009
SMS 1h before, 10am call 0.193 0.006 0.754
SMS 24h before, 10am call 0.179 0.008 0.073
No SMS, 6:30pm call 0.147 0.018 0.011
SMS 1h before, 6:30pm call 0.169 0.011 0.027
SMS 24h before, 6:30 pm call 0.180 0.010 0.126
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Figure 6.1: Assignment frequencies over time.
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A.1 Proof of Theorem 1

Recall that under exploration sampling, a share

qdt =
pdt · (1− pdt )∑
d′ p

d′
t · (1− pd

′
t )

of wave t is assigned to treatment d, where pdt is the posterior probability that d is optimal.

1. Each treatment is assigned infinitely often.
Suppose otherwise. Then there is some treatment which is only assigned a finite number
of times, and is not assigned anymore after some wave t′. The posterior probability pdt of
this treatment being optimal is bounded away from 0 for t > t′ by Lemma 14 in Russo
(2016).

Note now that under exploration sampling, the denominator in the expression defining
qdt is bounded above by 1, and thus the probability qdt of being assigned to treatment d
is bounded below by pdt · (1 − pdt ). It follows that qdt is bounded away from 0 when the
same holds for pdt . But this in turn implies that treatment d will be assigned again with
probability 1 at some point after t′. The claim follows by contradiction.

2. The share of observations assigned to the best treatment converges to 1/2 as
T →∞.
For a given value of pdt 6= 0, we can derive upper and lower bounds on qdt , by considering
the maximum and minimum of the expression defining qdt with respect to the vector pt,
given pdt .

The denominator of the expression defining qdt ,
∑
d′ p

d′

t · (1−pd
′

t ), is concave as a function
of the vector pt. The maximum of qdt is therefore achieved at a corner of the simplex of
possible values for pt given pdt . These corners are such that pd

′

t is equal to 0 for all but
two values of d′ (one of them d). For any such pt we get qdt = 1/2, and thus

qdt ≤
1

2

for all values of pt and all d.

Reversely, again by concavity as well as symmetry of the denominator, the minimum of
qdt with respect to the vector pt, given pdt , is achieved when pd

′

t is equal to 1−pdt
k−1 for all
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d′ 6= d. We therefore get

qdt ≥
pdt · (1− pdt )

pdt · (1− pdt ) +
∑
d′ 6=d

1−pdt
k−1

(
1− 1−pdt

k−1

) =
pdt

pdt +
(

1− 1−pdt
k−1

) ,
≥ pdt
pdt + 1

.

Since each treatment is assigned infinitely often, we have that pdt → 1 in probability for
the optimal treatment d, again by Lemma 14 in Russo (2016), and therefore

pdt
pdt + 1

→ 1

2
.

We get that qdt → 1/2 in probability. The claim follows by the law of large numbers.

3. All the other treatments d are assigned to a share of the sample which con-
verges to a non-random share q̄d. q̄d is such that the posterior probability
of d being optimal goes to 0 at the same exponential rate for all sub-optimal
treatments.
Consider two sub-optimal treatments d, d′. Lemma 13 in Russo (2016) implies that along
subsequences of T where the share of observations allocated to d up to time T exceeds
q̄d, the posterior probability pdt that d is optimal has to go to zero exponentially faster
than pd

′

t , for at least some suboptimal d′. This result is a reflection of the exponential
convergence of posterior probabilities, in terms of the number of observations allocated
to a given treatment, for fixed parameter vectors.

Note now that by definition of qdt

qdt ≤
pdt · (1− pdt )
pd
′
t · (1− pd

′
t )
≤ 4

pdt
pd
′
t

,

where the second inequality holds as long as pd
′

t ≤ 1/2. If pdt
pd
′

t

converges to 0 at an

exponential rate, we thus get that the same holds for qdt .

By Lemma 12 in Russo (2016), if along subsequences where the share of observations
allocated to d up to time T exceeds q̄d we have that qdt goes to 0 sufficiently fast (e.g., at
an exponential rate), we have that the share of observations assigned to d has to converge
to q̄d. This reflects a “balancing” tendency in the algorithm: If “too many” observations
are allocated to d, then the probability of allocating future observations to d becomes very
small (by the preceding argument), and the share of observations allocated to d returns
to q̄d. The claim follows.

4. No other assignment algorithm for which statement 1 holds has average regret
going to 0 at a faster rate than exploration sampling.
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This is an immediate corollary of Proposition 7 in Russo (2016), once we note that the
rate of convergence of average regret to 0 is the same as the rate of convergence of the
probability of choosing a sub-optimal treatment. To see this latter point, note that average
regret is given by ∑

d

P (d∗(mT , rT ) = d) ·∆d.

The rate of convergence of this term is dominated by the slowest rate of convergence of
P (d∗(mT , rT ) = d) across the suboptimal treatments d, for which ∆d > 0. �

A.2 Optimal design in a simple example

In this section, we discuss optimal experimental designs in a simple example. Suppose we have
ten experimental units that we can enroll in two waves. There are three treatments. The cost
of all treatments is the same, so we set c = 0 and the value of success equal to one for simplicity.
We impose a uniform prior for θ.

Dividing the sample between first and second wave. A first question to consider is how
to divide the total sample of 10 units between the two waves. For each division (N1, 10−N1)

between the two waves, we can calculate expected welfare V0 at the outset of wave 1, using the
value function derived in Section 3.1.

Figure A1 plots expected welfare as a function of the sample size N1 in wave 1. The
boundary cases N1 = 0 and N1 = 10 correspond to an experiment with only one wave. The
optimal split assigns either 5 or 6 units to the first wave. Splitting the sample in this manner
allows us to learn from the first-wave assignment (e.g. of two units per treatment if N1 = 6)
and then focus attention on the treatments with higher values in the second wave.5

Assigning treatments. Based on Figure A1, we set N1 = 6. Driven by the symmetric prior,
it is optimal to assign two units to each of the three treatments in wave 1. Optimal assignment in
wave 2, where N2 = 4, depends on the outcomes of the first wave. We explore several scenarios
in Figure A2. This figure plots expected welfare for any second-wave treatment assignment in
the simplex n12+n22+n32 = 4, conditional on first-wave outcomes. For each scenario, the number
of successes in each treatment in the first wave determines the prior for treatment assignments
in the second wave. Our uniform prior for θ implies a Beta posterior, where for sd1 ∈ {0, 1, 2}
we get αd1 = 1 + sd1 and βd1 = 1 + 2− sd1. This Beta posterior has a mean of (1 + sd1)/4.

Four scenarios The four scenarios we consider are s1 = (1, 1, 1), s1 = (1, 1, 2), s1 = (1, 1, 0),
and s1 = (2, 2, 0). In the first scenario, each treatment had one success and one failure, leading
to a posterior that is again symmetric across treatments. In this scenario, shown in the top
left of Figure A2, it is optimal to assign two units to either one of the three treatments, and

5The welfare differences across alternative designs are relatively small in this setting, owing to the small
number of units involved. In our simulations calibrated to more realistic settings we found quantitatively
important differences.
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Figure A1: Dividing the sample across waves.
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Notes: The graph shows the expected welfare V0 (success rate of the final choice) as a function of the sample
size N1 in period 1, assuming a total sample size of 10 and three treatments, for a uniform prior.

one unit to each of the other two arms. In the second scenario, treatment 3 performed better
than treatments 1 and 2. In this scenario, shown in the top right of Figure A2, it is optimal to
assign three units to treatment 3, and one unit to either one of the other two arms. In the third
and fourth scenario, treatment 3 performed worse than treatments 1 and 2. In these scenarios,
shown in the bottom part of Figure A2, it is optimal to assign no units to treatment 3, three
units to either one of treatment 1 or 2, and one unit to the other treatment. Interestingly, this
dominates (though not by much) the assignment of two units to each of treatment 1 and 2.

Discussion In each of these examples, the largest number of units is assigned to the treatment
arms with the highest expected return. This reflects that more precise effect estimates for
treatment arms with low expected return are unlikely to affect the ultimate policy decision.
This is true even though our objective function does not assign any weight to the welfare of
experimental units; there is no exploitation motive.

A second observation is that a symmetric assignment is generally not optimal, even when
two treatments have the same current prior. In the second to fourth scenario above, the prior
distribution for treatments 1 and 2 is the same. The optimal design, however, assigns either
more units to treatment 1 or to 2. This reflects a non-convexity in the value of information,
due to the concave objective function maxd

(
E[θd|mT , sT ]− cd

)
. This situation is analogous

to option pricing, where higher volatility can increase the value of a stock option which is only
exercised for high profit realizations.
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Figure A2: Expected welfare as a function of treatment assignment
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Notes: This figure shows the expected welfare (action value function) U2 for each possible treatment
assignment n2 = (n1

2 + n2
2 + n3

2) in wave 2 (which is of size 4), taking as given the Beta-prior parameters
α1,β1 which were determined by the outcomes of wave 1 (which is of size 6). For example, the upper right
panel is for the case where treatment 1 and 2 each had one success, but treatment 3 had 2 successes. Note that
the color scaling differs across the plots for better readability.
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A.3 Further details regarding our simulations

Background on the experiments Ashraf et al. (2010) conducted a field experiment with
about 1,000 households in Lusaka, Zambia. During a door-to-door sale of Clorin, a water
disinfectant, each participating household was offered to buy a bottle at a randomly chosen
price, ranging from 300 to 800 Zambian Kwacha. The outcome we consider is whether the
household agreed to buy the bottle of Clorin.

Bryan et al. (2014) conducted a field experiment in rural Bangladesh. Households were
randomly assigned a cash or credit incentive of $8.50 (an amount covering round-trip travel),
or an information treatment, conditional on a household member migrating during the 2008
monga (lean) season. The outcome is whether at least one household member migrated (the
first stage of the original paper).

Cohen et al. (2015) conducted a field experiment in three districts of Western Kenya. Phar-
macy visitors were randomly assigned one of three subsidy levels for the purchase of artemisinin
combination therapies (ACT), an antimalarial drug. They were also randomly offered a rapid
detection test (RDT) for malaria. The treatments in this experiment are 3 subsidy levels with
or without RDT, and a control group. The outcome is whether the subject actually bought
ACT.

Figures The figures below compare the distribution of regret between non-adaptive assign-
ment and exploration sampling with probability mass functions (histograms) and quantile
functions. Note that a uniformly lower quantile function for exploration sampling, relative
to non-adaptive assignment, implies that its distribution of regret is first-order stochastically
dominated. The integrated difference between the two quantile functions equals the decrease
in average regret (increase in average welfare) that is gained from switching to exploration
sampling.
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