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Abstract

The regression discontinuity design (RDD) has become a popular method
for making causal inferences with observational data under minimal assump-
tions. Local average treatment effects (LATE) for RDDs are typically estimated
using local linear regressions with pre–treatment covariates added to increase
the efficiency of treatment effect estimates. In political science applications
where there are typically few observations around the cutpoint, covariate selec-
tion can have a large impact on treatment effect and standard error estimates.
In this paper, I propose a principled, efficiency-maximizing approach for se-
lecting covariates to include in RDDs. This approach allows researchers to
combine substantive insights with regularization via a novel adaptive LASSO
algorithm. When combined with currently existing robust estimation meth-
ods, this approach improves the efficiency of LATE RDD with pre–treatment
covariates1.
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The regression discontinuity design (RDD) has become a popular method for

making causal inferences with observational data under minimal assumptions (see

eg. Caughey and Sekhon (2011); Erikson and Rader (2017); Green et al. (2009);

Imai (2011); Skovron and Titiunik (2015)). The premise of the RDD is conceptually

simple and intuitive. Around a narrow interval of a threshold for a variable that

assigns a treatment (running variable), treatments can be plausibly considered to be

“as-if” randomly assigned. While bandwidth selection, kernel choice and estimation

strategy for RDDs are well understood, work on theoretical considerations regarding

the common practice of including covariates to adjust local average treatment effect

(LATE) estimates is relatively new (Frölich 2007; Calonico et al. 2019).

Calonico et al. (2019) in particular provide strong theoretical and empirical

grounds for continuing the practice of estimating RDDs with pre–treatment covari-

ates. Despite the substantial achievements in this area, however, applied researchers

are left will little guidance regarding which covariates they should include or exclude

when estimating RDDs. In this paper, I develop a framework and a method for

selecting pre-treatment covariates to incorporate into RDDs to address this gap for

applied researchers.

This approach is flexible and allows researchers to combine substantive knowledge

with regularization via a novel Adaptive LASSO that is employed here on the basis of

its demonstrated model selection (oracle) properties (Zou 2006). This method allows

applied researchers to initially choose covariates to include based on context-specific

substantive knowledge of the estimation problem and then subjects this initial choice

to further optimization through covariate trimming via regularization using the Adap-

tive LASSO, a machine learning algorithm that is used primarily for dimensionality

reduction when consistent and correct model selection is important2.

2As I describe in more detail below, this contrasts with the more “traditional” version of the
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The remainder of this paper is as follows. Section 1 provides a brief introduction

to LATE estimation for sharp RDDs with local linear regression (LLR), the focus of

this paper; Section 2 introduces the adaptive lasso and accompanying implementation

algorithm along with relevant theoretical derivations; Section 3 provides an applied

example of enhanced LATE estimation using a close election RDD study of the effect

of holding political office on profit margins in Russian firms published in the American

Political Science Review by (Szakonyi 2018). Section 4 provides empirical evidence

of the bias reduction and efficiency gains of this method using a series of simulated

close election RDDs with covariates and finally, Section 5 concludes with a discussion

of future research in this area.

1 Covariate adjusted LATE in regression disconti-

nuity designs

Regression discontinuity designs are a framework for the causal estimation of local av-

erage treatment effects with observational data. This is accomplished using a running

variable Fi; i = 1, · · · , n which assigns treatment Ti on the basis of some threshold

value f such that if Fi > f , a unit (individual, geographic unit etc) is assigned to

treatment Ti = 1 and is not assigned to treatment otherwise Ti = 0. Assuming

continuity of the forcing variable, the sharp RDD leverages this mechanism by al-

lowing for the causal estimation of LATE around a narrow window of the threshold

f − ε < f < f + ε by making the assumption that, in the limit of this window, units

are as “as if” randomly assigned to a treatment (Hahn, Todd, and Van der Klaauw

2001). In line with other work on the RDD, this paper is concerned primarily with

LASSO developed by Tibshirani (1996) which is concerned primarily for MSE reduction at the
expense of consistent model selection and specification.
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the sharp RDD, the most commonly used design in the literature (Calonico et al.

2016).

Under the potential outcomes framework (Rubin 2005), define Yi as the observed

outcome for i, Yi(1) as the outcome, had unit i received treatment, and Yi(0) as the

outcome had unit i not received treatment, RDDs allow us to estimate the local av-

erage treatment effects (LATE) at the threshold Fi = f . For purposes of illustration,

we assume that f = 0:

LATE = τ = lim
Fi↓0

E[Y (1)i|Fi = f + ε]− lim
Fi↑0

E[Y (0)i|Fi = f − ε] (1)

Estimation of τ is typically accomplished through a local linear regression (LLR) in

a neighborhood of the cutpoint Fi ∈ [c−h, c+h] which is determined through optimal

bandwidth selection procedures designed to minimize cross-validated MSE Imbens

and Kalyanaraman (2012).

Ŷi = β0 + τ̂Ti + f(Ti, Fi) (2)

In Equation 2, τ̂ is the estimated local average treatment effect, Ti is a binary

treatment indicator function which equals 1 when Fi > 0 and f(Ti, Fi) is a function

of the forcing variable which often takes the form of a non-parametric kernel or pth

order polynomial. A common LLR model estimated in the literature is the model

shown in Equation 3 (Calonico et al. 2019):

Ŷi = β0 + τ̂Ti + δ(Fi · Ti) +Xβ (3)

In Equation 3, a set of covariates X are added to increase the precision of LATE.

Calonico et al. (2019) derive the covariate adjusted estimator of τ̂ and demonstrate
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that pre–treatment covariate adjustment typically leads to more efficient estimates

of τ̂ but, as mentioned above, there is little guidance regarding which pre–treatment

covariates should be included to maximize the efficiency of LATE. Table 1 which lists

the types of covariates chosen for similar close-election RDD designs highlights this

problem. This is particularly problematic in small N estimation contexts and when

covariates are correlated with the running variable, cases in which covariate selection

can have a much greater impact on LATE efficiency and point estimates.

As a solution to a similar problem in the context of randomized experiments (Blo-

niarz et al. 2016) propose selecting covariates using a shrinkage and variable selection

method known as the LASSO, a practice which I modify and extend to LATE estima-

tion in the regression discontinuity design here by employing the adaptive lasso, the

only version of the lasso which has oracle (correct model selection) properties (Zou

2006).

Covariate selection using the adaptive lasso has a number of benefits. First, given

any initial set of covariates chosen by the researcher, subsequent covariate selection us-

ing this method can improve optimal bandwidth choice via model MSE minimization

independent of the bandwidth estimation algorithm; second, this method can maxi-

mize LATE efficiency and; third, the method constrains the extent which a treatment

effect estimate can be “p-hacked” through the practice of adding covariates. Each of

these properties are demonstrated below.
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2 Regularization, machine learning and variable

selection

Regularization methods are tools used primarily for prediction problems and machine

learning applications as a means of reducing the dimensionality of a feature space

to avoid over fitting of a prediction model. In the context of linear models, ridge

regression and lasso regression are the primary regularization methods used for linear

prediction problems Tibshirani (1996). Each method applies a term which penalizes

each additional variable added to an OLS model in a different way. For instance,

in all OLS problems our goal is to find coefficient estimates β which minimize the

squared error loss:

β̂OLS = arg min
β

N∑
i=1

(Yi −Xβ)2

OLS under mild assumptions is guaranteed by Gauss-Markov to be the best linear

unbiased estimator (BLUE) of the coefficient values. However, if our ultimate goal

is prediction using a linear model, as is typically the case in the machine learning

context, the bias–variance trade-off allows us to exchange unbiasedness of coefficient

estimates for a model that makes better out-of-sample predictions (lower MSE) Tib-

shirani, Wainwright, and Hastie (2015). This was first demonstrated by statistician

and mathematician Charles Stein in 1956 and improved upon by statistician Williard

James and Stein in 1961 and came to be known as James-Stein shrinkage estimation

of linear models (Stein 1956; James and Stein 1961).
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2.1 Shrinkage and ridge regularization

As its name suggests, shrinkage estimation is a means of optimizing the predictive

abilities of linear models through shrinking coefficient estimates toward zero. One of

the first shrinkage methods developed for linear models was ridge regression which

added a l2 penalty to the OLS minimization problem (Tihonov 1963):

β̂Ridge = arg min
β

N∑
i=1

(Yi −Xβ)2︸ ︷︷ ︸
OLS Loss

− λ

p∑
j=1

β2
j︸ ︷︷ ︸

Ridge Penalty

In ridge regression equation above, the original OLS loss function is estimated with

a penalty which penalizes the addition of more variables and is determined by the

tuning parameter λ which is typically estimated using cross-validation (Tibshirani

1996).

2.2 Shrinkage and selection with lasso regularization

This ridge regression estimator ends up introducing biased (shrunken) coefficient esti-

mates, but through the introduction of this bias, minimizes MSE and improves ability

of the model to make better predictions in out of sample data. Unfortunately, ridge

regression cannot be used as a variable selection tool because it will never shrink co-

efficients to zero (Tibshirani, Wainwright, and Hastie 2015), however, the LASSO, an

acronym for “least absolute shrinkage and selection operator,” which slightly modifies

the penalty term above to an l1 norm allows the model to serve as both a shrinkage

and selection method:

β̂lasso = arg min
β

N∑
i=1

(Yi −Xβ)2︸ ︷︷ ︸
OLS Loss

− λ

p∑
j=1

|βj|︸ ︷︷ ︸
Lasso Penalty
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Due to the nature of the constrained optimization problem presented by the ob-

jective function above, some coefficients will be shrunk toward zero, thus allowing for

the lasso to be model selection and shrinkage tool. Additional versions of the lasso

which involved tweaks of the penalty for specific high dimensional problems include

the elastic net, which can be thought of as a middle ground between ridge regres-

sion and the lasso, and the “group lasso”, which is used to select out large groups of

covariates.

2.3 Variable selection and oracle properties of the adaptive

lasso

Most variations of the LASSO applicable to high dimensional (p > n) data often do

a good job of minimizing MSE, but fare poorly in simulations in which the ultimate

goal is to retrieve the correct subset of covariates from a relatively large pool Zou

(2006). As such, the usefulness of the ordinary lasso for LATE adjustment in RDDs,

which do not typically involve high dimensional problems with covariates, is somewhat

questionable. Fortunately, the adaptive lasso first introduced by Zou (2006) was

developed with the goal of maximizing “correct” variable selection for both low and

high-dimensional estimation problems, making it an ideal candidate for covariate

adjustment of LATE in RDDs and other causal inference contexts which call for

covariate adjustments. As with other flavors of the LASSO the adaptive LASSO

involves some alterations of the regularization term:

β̂adaptive = arg min
β

N∑
i=1

(Yi −Xβ)2︸ ︷︷ ︸
OLS Loss

− λ

p∑
j=1

ωj|βj|︸ ︷︷ ︸
Adaptive Penalty

The inclusion of a set of weights ω, differentiates the adaptive LASSO from other
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LASSO varieties. In the adaptive LASSO as developed by Zou (2006), weights are

chosen from the OLS estimates of the coefficients such that:

ωj =
1

|βj|γ

where the βj are the coefficients estimated from an OLS model:

Yi = β0 + β1X1 + · · ·+ βjXj

and γ is a tuning parameter that can take on positive values. In his original adaptive

lasso study,Zou (2006) tuned the adaptive lasso with γ values of 0.5,1 and 2 or cross-

validation. In his simulations, the best results were achieved with γ = 2 followed by

γ selected by cross validation. The tuning parameter λ is estimated in the ordinary

way via k -fold cross-validation3.

What makes the adaptive lasso appealing for causal inference, in general, is that

with the appropriate value of λ estimated from the data, the adaptive lasso exhibits

oracle properties: it tends to consistently select a correct subset of variables out of a

larger set and has asymptotic guarantees of unbiasedness and normality (Zou 2006).

This is especially useful when the lasso is used as a variable selection, rather than

shrinkage tool, which will be true more often in the context of covariate adjustments

of LATE in RDDs and other causal inference contexts more generally.

Indeed, as with ridge regression and other varieties of lasso, however, raw param-

eter estimates (β̂adaptive) can be biased in finite samples, which seemingly limits the

utility of this method for causal inference more generally. Fortunately, however, as

Bloniarz et al. (2016) and others point out, estimation through a two-step procedure

3In most software packages k is set to 10 but this should be adjusted depending upon sample
size.
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in which the lasso is used as a model selection tool and final parameter values are

estimated using OLS allows us to obtain BLUE coefficient estimates with appropriate

standard errors in an easily interpretable model.

Accordingly, this is the approach that we employ here discussed in more detail

below. Furthermore, here, as in (Bloniarz et al. 2016), we argue that adaptive lasso

covariate adjustment of LATE can improve the precision of estimates and also function

as a means of “principled” model selection that can avoid some of the pitfalls of model

manipulation to recover statistically significant treatment effects (ie “p-hacking”) for

RDDs. Based on a series of simulations and on the basis of the theoretical results

discussed here and previously in (Bloniarz et al. 2016), we recommend a four–step

process for RDD treatment effect estimation when covariates are included. This

process is outlined in Table 2 and each step is described in more detail below.
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Table 2 – Overview of an RDD estimation algorithm with the adaptive lasso.

Step 1 Researcher pre-treatment Covariates are selected by the researcher
covariate selection on the basis of substantive concerns.

and data issues.

Step 2 Adaptive lasso regularization The model from Step 1 is estimated using an adaptive lasso
as described below.

Step 3 Covariate adjustment Covariates and higher-order terms whose coefficients are
shrunk to 0 are excluded from the final model.

The adaptive lasso is tailored in this case
such that the treatment effect, forcing variable
and variables included in the kernel chosen are
NOT penalized.

Step 4 CCT robust estimation The modified model from Step 3 is estimated
of final model via the CCT robust procedure

(Calonico, Cattaneo, and Titiunik 2014).

Briefly, the four steps involve researcher model selection based on substantive or

theoretically motivated concerns, the application of a adaptive lasso regularization

with tuning parameter cross validation; variable selection based on the results of

adaptive lasso estimation in the previous step and finally CCT robust estimation

of the model selected from Step 3. Each of these steps along with treatment effect

estimates produced by this method in the context of RDDs with local linear regression

and covariates are derived below.
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3 Adaptive lasso estimation of LATE for RDDs

3.1 Step 1: Researcher Pre-Treatment Covariate Selection

The purpose of including pre-treatment covariates in RDD estimation, as in random-

ized experiments, is to increase the precision of treatment effect estimates (Bloniarz

et al. 2016; Calonico et al. 2018). This increase in precision can be the result of

improved bandwidth selection, reduced model variance or a combination of the two.

Some questions that researchers may struggle with, however, are: (1) which pre-

treatment covariates to include in the model and; (2) whether pre-treatment covari-

ates should be included before or after optimal bandwidth selection.

This is a thorny issue because all of these decisions can have significant down-

stream consequences for LATE estimation and efficiency, particularly when covariates

included are highly correlated with the forcing variable and in small N local linear

regression contexts which tend to be common in RDD estimation within the political

science literature. As a result, temptations to manipulate covariate selection to maxi-

mize the statistical significance of LATE estimates is high, particularly in cases where

LATE estimated without covariates are marginally significant (i.e. 0.05 < p < 0.10).

While the automated model selection algorithm proposed here in Table 2 cannot

eliminate “p-hacking”, it is a procedure that can at the very least attenuate the

ability of researchers to engage in this practice while simultaneously providing LATE

estimates when covariates are introduced than researcher model selection alone. That

being said, initial decisions regarding which pre-treatment covariates to include should

always be made on the basis of expert judgment/the researcher’s expectation of which

are the most relevant to the problem at hand. Since RDDs in the political science

literature are typically conducted with close election vote share as the forcing variable

Fi and the treatment of interest is an election win Ti where Ti = 1 if Fi > c and Ti = 0

13



otherwise we focus on this type of RDD to illustrate the method.

Yi = α + τTi + γFi + δ(Fi · Ti) +Xβ + εi (4)

Equation 4 is a typical local linear regression model estimated to obtain the treat-

ment effect estimate τ̂ where the observations i are in some neighborhood, a of the

forcing variable Fi around the cutpoint c, i.e. i ∈ Fa ± c and X is a matrix of covari-

ates. In these circumstances, the covariates included are often characteristics of the

candidate (age, sex, etc) and characteristics of an electoral unit that they represent

(pre-treatment demographics etc). Szakonyi (2018), for instance includes candidate

controls such as age, gender, incumbency, ruling party membership, state ownership,

foreign ownership, and logged total assets in the pre-election year in his estimates. As

I mentioned above, selection of this initial set of covariates should always be dictated

by a substantive understanding of the problem at hand.

3.2 Step 2: Adaptive lasso regularization

Once the model in Equation 4 has been selected, a question that remains is whether

this is the best possible model that can be fit which invariably raises the question of

what “best” means in this context. Here we define “best” as a model in which a set of

covariates X∗ are chosen out of the original set of covariates X which minimizes the

variance of LATE, V ar(τ̂). All things equal, it can be shown that minimizing V ar(τ̂)

can be accomplished by minimizing the mean squared error (MSE) of the local linear

regression.

Formally, if Xs is a subset of covariates from X, Xs ⊆ X, we seek to choose an

Xs∗ that minimizes the mean squared error (MSE) of Equation 4 w.r.t to the LLR

parameters which we describe as the vector Θ = (τ, γ, δ, β) for convenience. Thus:

14



arg min
Θ

N∑
i=1

(Yi − [α + τTi + γFi + δ(Fi · Ti) +Xs∗β])2 (5)

While many methods exist for choosing Xs∗, LASSO regularization is suited directly

to the estimation of linear models and has been found to outperform other automated

variable selection methods (Tibshirani, Wainwright, and Hastie 2015). Also, since we

are primarily concerned with an optimal variable selection and minimizing the bias of

the LATE in a low-dimensional context, the adaptive lasso discovered by Zou (2006)

is a natural choice since it is the only lasso variety which possesses the oracle property,

as mentioned above. This is important because it guarantees that it will be consistent

in both estimation of τ and in variable selection. Formally this implies asymptotic

unbiasedness of τ̂ in the ordinary sense:

√
n(τ̂ − τ)→ N(0, I−1(τ))

while simultaneously identifying the correct set of non-zero coefficients. These prop-

erties ensure that adaptive lasso estimates of τ are asymptotically at least as good, in

terms of efficiency and bias, as LLR without adaptive lasso variable selection.

Learning about which covariates to exclude in RDDs, however, requires modifying

the adaptive lasso to the RDD context. In particular, we do not want to penalize the

treatment effect, forcing variable or kernel, but do want to penalize any additional

covariates. This can be accomplished by simply estimating a modified version of the

adaptive lasso in which the weights for these coefficients are set to 0 while the weights

of the added covariates are identical to those of the adaptive lasso. The full initial

model to be estimated is thus:
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arg min
Θ

N∑
i=1

[Yi − (α + τTi + γFi + δ(Fi · Ti) +Xβ)]2 + λ

[
p∑
j=3

ωj|βj|

]
(6)

Where ωj = 1/|βj|γ are obtained through OLS estimation of βj and γ is deter-

mined through cross-validation as described above. Again, the tuning parameter λ is

estimated with k-fold cross validation.

3.3 Step 3: Automated Model Selection

Once parameters from the adaptive lasso model in Equation 7 are estimated using the

optimal penalty value λRDD and optimal weights, those covariates which are shrunk

to zero are excluded from the model prior to calculating the optimal bandwidth.

The resulting model used to estimate optimal bandwidth and subsequently, robust

treatment effects, is will thus be:

E(Yi|Ti, Fi, Xo) = α + τTi + γFi + δ(Fi · Ti) +Xoβ (7)

where Xo ⊆ X is the truncated set of covariates selected out by the adaptive lasso

described above. Since optimal bandwidth selection algorithms such as Imbens–

Kalyanaraman use cross-validated MSE as criteria for selecting the “best” possible

bandwidth, MSE for bandwidth values estimated using covariates pre-processed by

the adaptive lasso method described should be equal to or less than model MSE for

bandwidth values estimated using the full model from Step 1.

As I demonstrate below, this method can be incorporated into RDD estimation

with covariates before bandwidth selection, which will alter the optimal bandwidth

chosen, or after bandwidth selection if the bandwidth is set to a predetermined value
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(eg. 1%, 5% etc for close election RDDs).

3.4 Step 4: Regularized CCT Robust Estimation

Steps 1-3 involve selecting an optimal LLR conditional expectation function (CEF),

E(Yi|Ti, Fi, Xo), and estimating an optimal bandwidth h∗o based on the CEF. Once

this has been accomplished, final treatment effect estimates are produced using CCT

robust estimation (Calonico et al. 2018). The final LATE estimated using this proce-

dure, τ̂adaptive will be at least as efficient as the un-adjusted treatment effect estimated

from the original model, τ̂ :

V ar(τ̂adaptive) ≤ V ar(τ̂)

A proof of this is provided in the Appendix.

4 Empirical Illustration: Do Firms Profit from

Having Elected Board Members?

Knowledge of whether politicians benefit financially from holding office-holding is es-

sential is essential for ensuring the legitimacy of democratic institutions. Earlier work

using RDDs to estimate the returns to office found large lifetime earnings effects by

barely (initially) elected members of the British Parilament (Eggers and Hainmueller

2009). Subsequent work in different national contexts has found similar results as

well (see eg Fisman, Schulz, and Vig (2014) (India), Truex (2014) (China), etc). Re-

cent innovative work published in the American Political Science Review by Szakonyi

(2018) adds an interesting dimension to this literature by using a close election RDD

to explore whether office-holding affects the profits of firms whose board members
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held political office in Russia. Using a close election RDD, Szakonyi (2018) finds

that office holding positively affects both firm profitability and firm revenue. In the

empirical illustration below, I apply both the adaptive lasso algorithim described

above to optimize covariate adjusted treatment effects.

In the following analysis, I replicate the local linear regression in Table 2 of Sza-

konyi (2018). In this table, the author uses a close election RDD to estimate the causal

effect of holding political office on firm profitability with and without covariates using

a 5% bandwith as recommended by CCT???? and the I-K optimal bandwidth esti-

mated without covariates. The general form of the local linear regression estimated

is:

Firm Profits = α+τ̂(District Win)+γMargin+δ(District Win×Margin)+Xβ+Yj+Sj+Rj

(8)

In Equation 8, the outcome variable is firm profit margins and the treatment

indicator is whether the businessperson won election in their district and the running

variable is the vote margin. In these analyses are also included a set of covariates

X and year, sector and region fixed effects (Y, S, R). This regression is estimated

around a threshold of the cutpoint c ± hfull where c ± hfull is determined through

cross-validation. Define the original treatment effect of the full model (i.e. the model

entered in Step 1 above), τ̂(hfull).

After selecting covariates via either Bayesian SS or LASSO through Steps 2-4, we

are left with the model:
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Firm Profits = α+τ̌(District Win)+γMargin+δ(District Win×Margin)+Xoβo+Yj+Sj+Rj

(9)

Note that the primary difference between the two equations above is the new set

of covariates Xoβo which satisfies the condition rank(Xo) ≤ rank(X) through the

removal of covariates and a new optimal bandwidth hoptim as a result of the addition of

new covariates. We thus define the new adjusted treatment effect as τ̌(hoptim). It can

be shown that V ar[τ̌(hoptim)] ≤ V ar[τ̂(hfull)], a result that is expanded upon in the

Appendix. While coverage properties of this new estimator is less clear theoretically,

results from CCT and others suggest that the regularization adjusted estimator will

have superior coverage properties as well under a variety of circumstances. This is

confirmed in a series of simulations below.

One important thing to note is that all fixed effects in the model were not reg-

ularized. This was done deliberately through setting the penalty parameters to 0

when estimating the LASSO model. While efficiency gains can theoretically be made

through the exclusion of some fixed effects, this estimation strategy does not make

substantive sense in any context.

Table 3 contains original and regularization adjusted treatment effects and stan-

dard errors. One thing of note is that the standard errors of all adaptive lasso treat-

ment effects are smaller than those of the original covariate adjusted treatment effects

published. As simulations below demonstrate, this is due to the oracle property en-

joyed by the adaptive Lasso, which has been demonstrated produce “correct” model

specification under a wide variety of conditions.
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Original Adaptive Original Adaptive Adaptive

(APSR) 5% (APSR) 5% CCT Robust

District Win 0.146∗∗∗ 0.102∗ 0.198∗∗ 0.097∗∗ 0.140∗∗∗

(0.065) (0.060) (0.090) (0.038) (0.052)

Bandwidth 0.113 0.120 0.050 0.050 0.120

Covariates Dropped * 4 * 2 4

Firm and Cand Full Select Full Select Select

Covariates

Region,Sector Full Full No No No

Year FE

Observations 481 520 201 201 520

Table 3 – Replication of Political Connections and Firm Profitability Analysis
in Szakonyi (2018) with Adaptive LASSO Adjusted Treatment Effects.

5 Simulations

In order to explore the bias and coverage properties of the adaptive lasso method in as

realistic a scenario as possible, I perform a series of simulations using the same election

and profit data from Szakonyi (2018) described above but with a true simulated

treatment effect. To accomplish this, I use the correlation matrix of the covariates

and vote margin used by Szakonyi (2018) to construct 2,000 simulated data sets

which have the same covariance structure and mean of the original dataset and set

the true treatment effect τRDD to 0.30.

Define Ξ as a matrix which contains the set of covariates plus the vote margin used

in Szakonyi (2018) discussed above. Furthermore, assume that the data generating

process of Ξ is that of a multivariate normal distribution defined by some mean

parameters µ = (µ1, µ2, · · · , µp) and a covariance matrix Σ. Thus:

Ξ ∼ N (µ,Σ)
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Using this data generating process along with empirically defined parameters µ and

covariance structure Σ, I generate s = 1, · · · , 2000 simulated data sets Ξs such that

the d.g.p of each simulated dataset adheres to:

Ξs ∼ N (µ,Σ)

Through generating the data in this manner, we’re insuring that each simulated

dataset conforms to a realistic d.g.p in the context of a close-election RDD. For each

simulation the outcome Y , and thus the true model, is thus defined by

Ys = 0.3(District Wins) + γ(Margins) + δ(District Wins ×Margins) + ηs

where the error term ηs ∼ N(0, 1), the simulated vote share, Margins is simulated as

one of the variables within Ξs and District Wins = I(Margins > 0) is a simulated

forcing variable based on Margins. The true treatment effect that we estimate using

the conventional RDD approach and adaptive lasso approach with is τRDD = 0.3. Re-

ported coefficient values, bandwidths and standard errors are CCT robust estimates

using the standard and adaptive approaches.

The model estimated for each simulation is the full model including covariates:

Ys = αs+ τ̂ sRDD(District Wins)+γsMargins+δs(District Wins×Margins)+Xsβs+εs

(10)

For the simulations, the average bias of τ̂ sRDD, SE(τ̂ sRDD) and % coverage of the

confidence intervals were recorded for models in which the bandwidth was allowed

to vary according to the adaptive lasso procedure outlined above or was fixed at a
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certain value with the adaptive lasso applied afterwards.

Figure 1 – Distribution of simulated treatment effects τ̂ sRDD, for adaptive lasso adjusted
treatment effects and conventional treatment effects across 2,000 simulated data sets
with variable bandwidth select. The true τRDD = 0.30 is denoted by the black dotted
line.

Figure 1 contains the distribution of simulated treatment effects estimated using

conventional and adaptive lasso methods. Here we see that the adaptive lasso restricts

the treatment effects estimated to a much narrower band around the true treatment

effect.
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Variable Bandwidth*

Adaptive Conventional Difference (Adaptive - Conventional)
τRDD Bias 0.274 0.397 - 0.123∗∗∗

% Coverage 0.944 0.699 + 0.245∗∗∗

τRDD Estimate 0.308 0.308 -
Bandwidth 0.38 0.292 + 0.088∗∗∗

Fixed Bandwidth∓

Adaptive Conventional Difference (Adaptive - Conventional)
τRDD Bias 0.375 0.375 - 0.001

% Coverage 0.931 0.796 + 0.135∗∗∗

τRDD Estimate 0.300 0.300 - 0.001
Bandwidth 0.200 0.200 -

Table 4 – Performance of Adaptive Lasso v. Conventional Treatment Ef-
fect Estimates in Simulations∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.10 for t-test of mean
difference withH0 : µAdaptive = µConventional. Average simulation results across 2,000
simulations comparing “Adaptive” vs. “Conventional” treatment effect bias and cov-
erage results. Final bias and coverage results are both estimated using CCT robust
point estimates and confidence intervals. *“Variable bandwidth” results are produced
through Imbens-Kalyanaraman optimal bandwidth selection based on models selected
by the adaptive algorithm described above or the full model mentioned in this section.
∓ For fixed bandwidth simulations, bandwidth was set to 0.20.

Table 4 contains estimates of the bias, % coverage and other statistics from the

simulation. The adaptive lasso here provides some very striking efficiency improve-

ments which are reflected in the % coverage estimates in both variable and fixed

bandwidth selection procedures. In the variable bandwidth scenario, the adaptive

lasso combined with CCT robust estimation produces confidence intervals on treat-

ment effects that achieves an average of 94% coverage versus 70% coverage under

conventional estimation while under the fixed bandwidth scenario, adaptive lasso es-

timation achieved 93% coverage compared to about 80% coverage under conventional

estimation. Each of these differences was statistically significant at the p < 0.01 level.
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6 Discussion

In this paper we have demonstrated that our algorithm which employs the adaptive

LASSO can improve the efficiency of treatment effects for RDDs estimated with co-

variates and provide a principled framework of treatment effect adjustment for RDDs.

As we emphasize above, however, this does not imply that substantive considerations

in the estimation process should be abandoned and replaced by automated machine

learning methods. To the contrary, substantive considerations, as reflected in the al-

gorithm that we developed above, are and should always be at the forefront of model

estimation whether in the context of RDDs or estimation strategies.
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