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Abstract

The nonparametric potential outcome system provides a foundational framework for giv-

ing conditions under which common predictive time series statistical estimands, such as the

impulse response function, generalized impulse response function, local projection and local

projection instrument variables, have a nonparametric causal interpretation in terms of dynamic

causal effects.
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1 Introduction
We introduce the nonparametric potential outcome system as a foundational framework to give
conditions under which common predictive time series statistical estimands, such as the impulse
response function (Sims (1980)), generalized impulse response function (Koop et al. (1996)), local
projection (Jordá (2005)) and local projection instrumental variables (Jordá et al. (2015)), have
a nonparametric causal interpretation. These results are illustrated with several examples from
macroeconometrics.

Quantifying dynamic causal effects is one of the great themes of the broader time series
literature. Researchers use a variety of methods such as “Granger causality” (Wiener, 1956;
Granger, 1969; White and Lu, 2010), highly structured models such as DSGE models (Herbst and
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Schorfheide, 2015), state space modelling (Harvey and Durbin, 1986; Harvey, 1996; Brodersen
et al., 2015; Menchetti and Bojinov, 2021) as well as intervention analysis (Box and Tiao, 1975)
and regression discountinuity (Kuersteiner et al., 2018). The potential outcome system is distinct.
References to some of the more closely related work will be given in the next section. This paper
is not focused on estimators and the associated distribution theory: we do not have much to say in
that regard which is novel.

The structure of the paper is as follows. Section 2 defines the potential outcome system, which
relates assignments to outcomes, allowing the corresponding dynamic causal effects to be defined.
This is carried out in a way which is suitable for observational time series, refering back to some
well known models in macroeconometrics. Section 3 looks at the causal meaning of common sta-
tistical estimands based on seeing the realized assignments and outcomes. The instrumented po-
tential outcome system is defined in Section 4. It relates assignments and instruments to outcomes.
In Section 5 we study the causal meaning of estimands based on seeing the realized assignments,
instruments and outcomes. Section 6 looks at the causal meaning of estimands where only the
instruments and outcomes are observed. Section 7 looks at the causal meaning of common statis-
tical estimands where only the outcomes are observed. Section 8 is a Conclusion. An Appendix
contains the proofs of the results given in the paper.

Notation: For a time series {At}t≥1 with At ∈ A for all t ≥ 1, let A1:t := (A1, . . . , At) and
At :=×t

s=1
A. A ⊥⊥ B says that random variables A and B are probabilistically independent.

2 The Potential Outcome System and Dynamic Causal Effects
Here we introduce the potential outcome system. This system extends the design-based potential
outcome time series approach developed in Bojinov and Shephard (2019) to stochastic processes.
We define a large class of casual estimands that summarize the dynamic causal effect of varying
the assignment on future outcomes. As an illustration, we show that this system nests most, if not
all, leading structural models in macroeconometrics as a special case.

The system relates to the literature on dynamic treatment effects in small-T , large-N panels.
The panel work of Robins (1986) and Abbring and Heckman (2007), amongst others, led to an
enormous literature on dynamic causal effects (Murphy et al., 2001; Murphy, 2003; Heckman and
Navarro, 2007; Lechner, 2011; Heckman et al., 2016; Boruvka et al., 2018; Blackwell and Glynn,
2018; Hernan and Robins, 2021; Bojinov et al., 2021; Lu et al., 2017)). Beyond Bojinov and
Shephard (2019), our work is closest to Angrist and Kuersteiner (2011) and Angrist et al. (2018).
We will talk about their work in Section 2.3.3.
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2.1 The Potential Outcome System
There is a single unit. At each time period t ≥ 1, it receives a dw-dimensional assignment {Wt}t≥1.
Associated with this assignment process, we observe a dy-dimensional outcome {Yt}t≥1. The
outcomes are causally related to the assignments through the potential outcome process, which
describes what outcome would be observed at time t along a particular path of treatments.

Assumption 1 (Assignment and Potential Outcome). The assignment process {Wt}t≥1 satisfies

Wt ∈ W :=×dw

k=1
Wk ⊆ Rdw . The potential outcome process is, for any deterministic sequence

{ws}s≥1 with ws ∈ W for all s ≥ 1, {Yt({ws}s≥1)}t≥1 , where the time-t potential outcome

satisfies Yt({ws}s≥1) ∈ Y ⊆ Rdy .

The classic case of the assignment is where Wt = 1 corresponds to “treatment” and Wt = 0 is
thought of as a “control,” so in that caseW = {0, 1}.

The potential outcome Yt({ws}s≥1) may depend on future assignments {ws}s≥t+1. Our next
assumption a priori rules this out, insisting (as one of the nine Bradford Hill (1965) criteria for
causality) that causality does not work backwards in time.

Assumption 2 (Non-anticipating Potential Outcomes). For each t ≥ 1, and all deterministic

{wt}t≥1, {w′t}t≥1 with wt, w
′
t ∈ W ,

Yt(w1:t, {ws}s≥t+1) = Yt(w1:t, {w′s}s≥t+1) almost surely.

Assumption 2 is a stochastic process analogue of non-interference (Cox (1958), Rubin (1980)),
extending White and Kennedy (2009) and Bojinov and Shephard (2019). Under Assumption 2, we
drop references to the future assignments in the potential outcome process, and write

{Yt({ws}s≥1)}t≥1 = {Yt(w1:t)}t≥1.

The set {Yt(w1:t) : w1:t ∈ W t} collects all the potential outcomes at time t.
Together, the assignments and potential outcome generate the observable output of the system.

Assumption 3 (Output). The output is {Wt, Yt}t≥1 = {Wt, Yt(W1:t)}t≥1. The {Yt}t≥1 is called the

outcome process.

The outcome process is the potential outcome process evaluated at the assignment process.
Even if both the assignment and outcome processes are observed, so we face the usual causal

challenge. We observe the potential outcomes associated with the realized assignment path, but do
not observe the potential outcomes associated with counterfactual assignment paths.

Finally, we assume that the assignment process is sequentially probabilistic, meaning that any
assignment vector may be realized with positive probability at time t given the history of the
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observable stochastic processes up to time t − 1. Here let {Ft}t≥1 denote the natural filtration
generated by (the σ-algebra of) the realized {wt, yt}t≥1.

Assumption 4 (Sequentially probabilistic assignment process). The assignment process is sequen-

tially probabilistic, meaning for all w ∈ W , 0 < P (Wt = w | Ft−1) < 1 with probability one.

This is the time series analogue of the “overlap” condition in cross-sectional causal studies.
By putting these assumptions together, we define a potential outcome system.

Definition 1 (Potential Outcome System). Any {Wt, {Yt(w1:t) : w1:t ∈ W t}}t≥1 satisfying As-

sumptions 1-4 is a potential outcome system.

The immediate setting for a potential outcome system is where the researcher sees the assign-
ments and the outcomes, which we will denote by

{wobs
t , yobst }t≥1.

This will be the focus of the next couple of sections. Section 7 will address the case where only
the outcomes are observed.

Before continuing, we highlight the generality of the potential outcome system by connecting
it to several recent developments and debates in macroeconometrics.

1. The system teases out what assumptions must be placed on the assignment process to endow
causal meaning to common statistical estimands without resorting to restrictive functional
form assumptions.

2. A rapidly growing body of empirical research directly operate with {wobs
t , yobst }t≥1. Em-

pirical researchers creatively construct measures of underlying economic shocks of interest
(such as monetary policy shocks, or fiscal policy shocks), and then use these constructed
measures to directly estimate dynamic causal effects through reduced-form methods. This
research agenda has been recently called “direct causal inference” by Nakamura and Steins-
son (2018) in order to contrast it with the dominant model-based approach to causal inference
in macroeconomics in the tradition of Sims (1980). We refer readers to Baek and Lee (2021)
for a comprehensive review of empirical research using this direct causal inference approach.

3. The system does not rely on “invertiblitiy” or ”recoverability” assumptions (Chahrour and
Jurado (2021)). Understanding what can be identified about dynamic causal effects without
relying on these assumptions is an active research area (Stock and Watson (2018); Plagborg-
Møller (2019); Plagborg-Møller and Wolf (2020); Chahrour and Jurado (2021)).
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4. The system uses no functional form restrictions. Workhorse models in macroeconometrics,
such as the structural vector moving average, assume linearity. However, this nullifies state-
dependence and asymmetry in dynamic causal effects. Adaptively, researchers weaken these
functional form assumptions on a case-by-case basis. For example, on the possible nonlinear
effects of oil prices (Killian and Vigfusson, 2011b,a; Hamilton, 2011); on the nonlinear and
state dependent effects of monetary policy Tenreyro and Thwaites (2016); Jordá et al. (2020);
Aruoba et al. (2021); Mavroeidis (2021), and on state-dependent fiscal multipliers (Auerbach
and Gorodnichenko, 2012b,a; Ramey and Zubairy, 2018; Cloyne et al., 2020).

Remark 1 (Background processes). For the potential outcome system, we could have introduced a

background process {Xt}t≥1 that is causally unaffected by the assignment process. Such a process

would play the same role as pre-assignment covariates in cross-sectional or longitudinal studies.

2.2 Dynamic Causal Effects
In a potential outcome system, any comparison of potential outcomes at a particular point in time
along different possible realizations of the assignment process defines a dynamic causal effect.
In particular, the dynamic causal effect of the assignment process on the outcomes at time t for
assignment path w1:t ∈ W t and counterfactual path w′1:t ∈ W t is Yt(w1:t) − Yt(w′1:t). Of course,
this is an enormous class of dynamic causal effects as there are exponentially many possible paths
w1:t ∈ W t. Therefore, we next introduce causal estimands that average over these dynamic causal
effects along various underlying assignment paths.

To do so, let us introduce some shorthand. For t ≥ 1, h ≥ 0, and any fixed w ∈ W , write

Yt+h(w) := Yt+h(W1:t−1, w,Wt+1:t+h),

the time-(t+ h) potential outcome at the assignment process (W1:t−1, w,Wt+1:t+h). Notice that

Yt+h = Yt+h(Wt).

Definition 2 (Dynamic causal effects). For t ≥ 1, h ≥ 0, and any fixed w,w′, the time-t, h-period

ahead impulse causal effect is, Yt+h(w)− Yt+h(w′). The filtered treatment effect is, if it exists,

E [{Yt+h(w)− Yt+h(w′)} | Ft−1] ,

while the corresponding average treatment effect is, if it exists,

E [Yt+h(w)− Yt+h(w′)] .
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Here the expectations are determined by the filtered probability space of the {Wt, {Yt(w1:t), w1:t ∈
W t}}t≥1.

The impulse causal effect measures the ceteris paribus causal effect of intervening to switch the
time-t assignment from w′ to w on the h-period ahead outcomes holding all else fixed along the
assignment process. This is a random object for two reasons: first, the potential outcome process
itself is stochastic, and second the past W1:t−1 and future Wt+1:t+h assignments are stochastic.

The filtered treatment effect, averages the impulse causal effect conditional on the natural filtra-
tion of assignments and observed outcomes up to time t−1. The use of the nomenclature “filtered”
in filtered treatment effect is from the stochastic process literature where filtering is the sequential
estimation of a time-varying unobserved variables, e.g. Kalman filter (Kalman (1960), Durbin and
Koopman (2012)), particle filter (Gordon et al. (1993), Pitt and Shephard (1999), Chopin and Pa-
pasphiliopoulos (2020)) and hidden discrete Markov models (Baum and Petrie (1966), Hamilton
(1989)). This labelling fits as potential outcomes are unobserved. Note that Lee and Salanie (2020)
used the title filtered treatment effect for cross-sections with partially observed assignments.

In cross-sections, it is conventional to call expected differences of potential outcomes at dif-
ferent values of the assignments, average treatment effects. This name comes from the leading
case of binary assignments where w = 1 represents “treatment” and w′ = 0 is stands for “control”
in randomized control trial. The average treatment effects averages the filtration away from the
filtered treatment effect, yielding the unconditional expectation of Yt+h(w)− Yt+h(w′).

Remark 2. If new outcome variables were added to an existing causal study, the impulse causal

effect and the average treatment effect for the existing variables would not be changed, but the

filtered treatment effect might as the new outcome variables would bulk up the filtration and so

possibly change the conditional expectations.

Finally, we also define analogous versions of the dynamic causal effects for deterministic scalar
treatment wk ∈ Wk, using the notation:

Yt+h(wk) := Yt+h(W1:t−1,W1:k−1,t, wk,Wk+1:dW ,t,Wt+1:t+h).

The corresponding time-t, h-period ahead impulse causal effect, filtered treatment effect, and av-
erage treatment effect for that specific k-th assignment are, respectively:

Yt+h(wk)− Yt+h(w′k), E[{Yt+h(wk)− Yt+h(w′k)} | Ft−1], E[Yt+h(wk)− Yt+h(w′k)].

The following derivatives will appear in the properties of some important time series estimands.
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Definition 3. If they individually exists, the

Y ′t+h(wk) =
∂Yt+h(wk)

∂wk

, E[Y ′t+h(wk) | Ft−1], E[Y ′t+h(wk)],

are called, respectively, the time-t, h-period ahead marginal impulse causal effect, the marginal
filtered treatment effect and the marginal average treatment effect, respectively

2.3 Examples from Macroeconomics
Here we illustrate how many leading causal models in macroeconomics can be cast as special cases
of the potential outcome system, placing additional restrictions on the potential outcome process.

2.3.1 Example: The Structural Vector Moving Average Model

The structural vector moving average (SVMA) model is the leading workhorse for the study of dy-
namic causal effects in macroeconometrics. As emphasized in Stock and Watson (2018); Plagborg-
Møller (2019); Plagborg-Møller and Wolf (2020, 2021), the SVMA model is consistent with all
discrete-time dynamic stochastic general equilibrium models, and all (linear) structural vector au-
toregression models have an associated SVMA representation.

The SVMA model maps into the potential outcome system by assuming

Yt(w1:t) :=
t−1∑
l=0

Θlwt−l + Y ∗t

while the associated {Wt}t≥1 is the assignment process as defined above, {Θl}0≤l<t is a matrix of
lag-coefficients and Y ∗t is a stochastic process of initial conditions.

The SVMA model imposes that the potential outcome: is linear in the assignment process and
has a second source of randomness (the initial conditions Y ∗t ). The SVMA is discussed in Section
7.

2.3.2 Example: Nonlinear Structural Vector Autoregressions

Some recent nonlinear structural vector autoregressions are special cases of the potential outcome
system. First, consider the motivating example of Goncalves et al. (2021), which analyzes a non-
linear structural vector autoregression of the form:

Y1,t(w1:t) = w1,t, Y2,t(w1:t) = b+ βY1,t(w1:t) + ρY2,t−1(w1:t−1) + cf(Y1,t(w1:t)) + w2,t,

where f is a nonlinear function. Given an initial condition Y2,0 := ε2,0, we can iterate this system
of equations forward to arrive at a potential outcome process Y1,t(w1:t) = w1,t, and Y2,t(w1:t) =
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g2,t(w1:t, ε2,0; θ), where g2,t is a known function given by iteration and θ are some parameters.
This is a potential outcome system where (1) Y1,t(w1:t) is non-random and only depends on the
contemporaneous assignment, (2) the randomness in Y2:t(w1:t) is driven by the initial condition.

Second, consider the bivariate simultaneous equation model used to study the used to analyze
the effects of monetary policy at the zero lower bound in Mavroeidis (2021) (see also Aruoba et al.
(2021)). The author analyzes the system of simultaneous structural equations

Y1,t(w1:t) = µ1 + (β1 + 1{Y2,t(w1:t) = 0}γ1)w1,t + (β2 + 1{Y2,t(w1:t) = 0}γ2)w2,t,

Y2,t(w1:t) = max{µ2 + λ1w1,t + λ2w2,t, 0}.

Substituting the expression for Y2,t into Y1,t, yields a potential outcome process

Y1,t(w1:t) = g1,t(w1,t, w2,t; θ), Y2,t(w1:t) = g2,t(w1,t, w2,t; θ),

where g1,t, g2,t are known functions given by the system and some parameters.

2.3.3 Example: Potential Outcomes of Angrist and Kuersteiner (2011), Angrist et al. (2018).

Angrist and Kuersteiner (2011) and Angrist et al. (2018) introduce a model that is also a special
case of the potential outcome system. In Section 2 of Angrist and Kuersteiner (2011) sets up a
system of structural equations in which (using our notation) for t ≥ 1,

Y1,t(w1:t) = f1,t(Y1:t−1(w1:t−1), w1,t; ε0), Y2,t(w1:t) = f2,t(Y1,t(w1:t), w2,t, w1:t−1; ε0),

where f1,t, f2,t are deterministic functions and ε0 is a random initial condition. This imposes that
w1:t only impacts Y1,t through w1,t directly and through Y1,t−1 indirectly. Further, w2,1:t only im-
pacts Y2,t contemporaneously. Related modeling and thinking includes White and Kennedy (2009);
White and Lu (2010).

Through forward iteration of the system starting at t = 1, this can also be expressed as a
potential outcome system (the iterative structure implies it satisfies non-anticipation). In particular,
they defined the collection of their time-t + h potential outcomes, as {Yt+h(wobs

1:t−1, w,Wt+1:t+h) :

w ∈ WW} and then their focus was on E[Yt+h(wobs
1:t−1, w,Wt+1:t+h)− Yt+h(wobs

1:t−1, w
′,Wt+1:t+h)],

which they called the “average policy effect.”

2.3.4 Example: Expectations

Macroeconomists often consider how assignments are influenced by the distribution of future out-
comes and how they in turn vary with assignments. For example, consumers and firms are modelled
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as forward-looking and so, expectations about future outcomes influence behavior today. A simple
optimization-based version of this (e.g. Lucas (1972), Sargent (1981)) is:

Wt = arg max
wt

max
wt+1:T

E[ U(Yt:T (wobs
1:t−1, wt:T ), wt:T ) | yobs1:t−1, w

obs
1:t−1], (1)

where U is a utility function of future outcomes and assignments, while Ft−1 is written out in
long hand as yobs1:t−1, w

obs
1:t−1. For each possible wt:T ∈ WT−t+1, the expectation is over the law

of Yt:T (wobs
1:t−1, wt:T )|yobs1:t−1, w

obs
1:t−1. This decision rule delivers Wt, Yt(W1:t). This looks like a po-

tential outcome system since Assumption 2 holds. But in Equation (1), the assignment Wt is a
deterministic function of past data which means it fails Assumption 4. However, incorporating any
form of noise into (1) would deliver a potential outcome system.

3 Estimands Based on Assignments and Outcomes
Here we establish nonparametric conditions under which some statistical estimands based on as-
signments and outcomes have causal meaning in the context of an potential outcome system

{Wt, {Yt(w1:t) : w1:t ∈ W t
W}}t≥1,

where researchers see all of
{wobs

t , yobst }t≥1,

the realized assignments and the realized outcomes. In particular, we ask if, for h ≥ 0 and fixed
wk, w

′
k ∈ Wk, the following statistical estimands have causal meaning: impulse response function,

local projection, generalized impulse response function and the local filtered projection. These
estimands are defined in the middle column of Table 1. The top line results are they have the
interpretation given in the right hand column of Table 1 under some important restrictions on the
assignments and some additional technical conditions. The rest of this Section will spell out the
details.

In this section, there is no loss in generality in assuming the outcome Yt+h is univariate: the
more general case is covered by running the analysis equation by equation.

3.1 Impulse Response Function
We begin by determining the conditions under which the unconditional impulse response function

(Sims (1980)) identifies the h-period ahead average treatment effect. It is define, for deterministic
wk, w

′
k ∈ Wk, if it exists, by

IRFk,t,h(wk, w
′
k) := E[Yt+h | Wk,t = wk]− E[Yt+h | Wk,t = w′k]. (2)
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Name Estimand Causal Interpretation
Impulse Response E[Yt+h |Wk,t = wk] E[Yt+h(wk)− Yt+h(w

′
k)];

Function −E[Yt+h |Wk,t = w′k]

Local Projection Cov(Yt+h,Wk,t)
V ar(Wk,t)

∫
Wk

E[Y ′t+h(wk)]E[Gt(wk)]dwk∫
Wk

E[Gt(wk)]dwk

Generalized Impulse E[Yt+h |Wk,t = wk,Ft−1] E[Yt+h(wk)− Yt+h(w
′
k) | Ft−1];

Response Function −E[Yt+h |Wk,t = w′k,Ft−1]

Local Filtered Projection E[{Yt+h−Ŷt+h|t−1}{Wk,t−Ŵk,t|t−1}]
E[{Wk,t−Ŵk,t|t−1}2]

∫
Wk

E[E[Y ′t+h(wk)|Ft−1]E[Gt|t−1(wk)|Ft−1]]dwk∫
Wk

E[Gt|t−1(wk)]dwk

Table 1: Top line results for the causal interpretation of common estimands based on assignments and
outcomes. Here Gt(wk) = 1{wk ≤ Wk,t}(Wk,t − E[Wk,t]) and Gt|t−1(wk) = 1{wk ≤ Wk,t}(Wk,t −
E[Wk,t | Ft−1]), while Ŷt+h|t−1 = E[Yt+h | Ft−1] and Ŵt = E[Wt | Ft−1]. Note that E[Gt(wk)] ≥ 0 and
E[Gt|t−1(wk) | Ft−1] ≥ 0.

IRFk,t,h(wk, w
′
k) can be decomposed into the average treatment effect and a selection bias term.

Theorem 1. Assume a potential outcome system, consider some k = 1, . . . , dw, t ≥ 1, h ≥ 0, fix

wk, w
′
k ∈ Wk and that E[|Yt+h(wk)− Yt+h(w′k)|] <∞. Then,

IRFk,t,h(wk, w
′
k) = E[Yt+h(wk)− Yt+h(w′k)] + ∆k,t,h(wk, w

′
k),

where

∆k,t,h(wk, w
′
k) :=

Cov (Yt+h(wk), 1{Wk,t = wk})
E[1{Wk,t = wk}]

− Cov (Yt+h(w′k), 1{Wk,t = w′k})
E[1{Wk,t = w′k}]

.

Proof: Given in Appendix.
Therefore, the unconditional impulse response function is equal to the average treatment effect

if and only if the selection bias term

∆k,t,h(wk, w
′
k) = 0.

A sufficient condition for this to hold is that the two covariance terms are zero.
These covariance terms depend on how the assignment Wk,t covaries with the potential out-

come Yt+h(wk). Since Yt+h(wk) = Yt+h(W1:t−1,W1:k−1,t, wk,Wk+1:dW ,t,Wt+1:t+h) by definition,
the selection bias depends on four underlying relationships in the potential outcome process:

1. how Wk,t relates to past assignments W1:t−1;

2. how Wk,t relates to other contemporaneous assignments W1:k−1,t,Wk+1:dW ,t;

3. how Wk,t relates to future assignments Wt+1:t+h;
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4. how Wk,t relates to the potential outcome process Yt+h(w1:t+h).

Theorem 2 gives sufficient conditions for ∆k,t,h(wk, w
′
k) to be zero.

Theorem 2. Under the same conditions as Theorem 1, if

Cov (Yt+h(wk), 1{Wk,t = wk}) = 0, Cov (Yt+h(w′k), 1{Wk,t = w′k}) = 0. (3)

then ∆k,t,h(wk, w
′
k) = 0. Moreover, (3) is satisfied if

Wk,t ⊥⊥ Yt+h(wk), and Wk,t ⊥⊥ Yt+h(w′k), (4)

which is implied by

Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}, (5)

which is implied by

Wk,t ⊥⊥
(
W1:t−1,W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Yt+h(w1:t+h) : w1:t+h ∈ W t+h}

)
. (6)

Proof: Trivial, as we are assuming independence of more and more random variables.
Equation (6) says the selection bias is zero if the assignment Wk,t is randomized in the sense that
it is independent of the other assignments and the time-(t+ h) potential outcomes.

Theorem 2 provides a nonparametric causal interpretation of a “shock” in macroeconometrics.
Recent reviews on dynamic causal effects by Ramey (2016) and Stock and Watson (2018) argue
intuitively that unconditional impulse response of observed outcomes to “shocks” in parametric
structural models, such as the SVMA, are analogous to an average treatment effect in a random-
ized experiment from cross-sectional causal inference.1 However, these statements rely on either
intuitive descriptions of the statistical properties of shocks2 or on a parametric model to link the
unconditional impulse response function to an average dynamic causal effect.

Moreover, Theorems 1 and 2 clarifies a recent empirical literature that seeks to directly con-
struct measures of the shocks of interest and measure dynamic causal effects through reduced-form
estimates of unconditional impulse response functions — so called “direct causal inference.” The

1Stock and Watson (2018) write on pg. 922: “The macroeconometric jargon for this random treatment is a ’struc-
tural shock’: a primitive, unanticipated economic force, or driving impulse, that is unforecastable and uncorrelated
with other shocks. The macroeconomist’s shock is the microeconomists’ random treatment, and impulse response
functions are the causal effects of those treatments on variables of interest over time, that is, dynamic causal effects.”

2Ramey (2016) writes on pg. 75, “the shocks should have the following characteristics: (1) they should be exoge-
nous with respect to the other current and lagged endogenous variables in the model; (2) they should be uncorrelated
with other exogenous shocks; otherwise, we cannot identify the unique causal effects of one exogenous shock relative
to another; and (3) they should represent either unanticipated movements in exogenous variables or news about future
movements in exogenous variables.”
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Theorems provide necessary and sufficient conditions that these shocks must satisfy in order for
the resulting unconditional impulse response function has a non-parametric causal interpretation.

3.2 Local Projection Estimand
Under the conditions of Theorem 1, impulse response functions are causal, but estimating impulse
response functions nonparametrically is not easy, particularly if Wk,t is not discrete.

In the new literature on direct causal inference in time series, it is common for researchers to
approximate the impulse response functions using the “local projection” estimator (Jordá, 2005),
which directly regresses the h-step ahead outcome on the assignment of interest

LPk,t,h :=
Cov(Yt+h,Wk,t)

V ar(Wk,t)
. (7)

What causal meaning does LPk,t,h have? Theorem 3 establishes that LPk,t,h is equivalent to a
weighted average of marginal causal effects of the assignment on the h-step ahead outcome.

Theorem 3. Under the same conditions as Theorem 1, further assume that:

i. The support of Wk,t is a closed interval,Wk := [wk, wk] ⊂ R.

ii. Yt+h(wk) is continuously differentiable in wk, as is E[Y ′t+h(wk) | Ft−1].

iii. The Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}.

Then, it follows, if it exists, that

LPk,t,h =

∫
Wk

E[Y ′t+h(wk)]E[Gt(wk)]dwk∫
Wk

E[Gt(wk)]dwk

,

where Gt(wk) = 1{wk ≤ Wk,t}(Wk,t − E[Wk,t]), noting E[Gt(wk)] ≥ 0;

Proof: Given in Appendix.
This says that LPk,t,h is a weighted average of marginal average treatment effects of Wk,t on

the Yt+h, where

E[Gt(wk)] = (E[Wk,t|Wk,t > wk]− E[Wk,t])P (Wk,t > wk)

and so the weights are non-negative and sum to one. Thus, if the Wk,t assignment is a shock in the
sense stated in Theorem 2, the local projection estimand is a nonparametric causal estimand.
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3.3 Generalized Impulse Response Function
In non-linear time series models, it is common for researchers to focus on the conditional version of
the impulse response function, the h-period ahead generalized impulse response function (Gallant
et al. (1993); Koop et al. (1996); Gourieroux and Jasiak (2005)), which is

GIRFk,t,h(wk, w
′
k | Ft−1) := E[Yt+h | Wk,t = wk,Ft−1]− E[Yt+h | Wk,t = w′k,Ft−1]. (8)

GIRFk,t,h decomposes into the filtered treatment effect and a selection bias term.

Theorem 4. Assume a potential outcome system, some k = 1, . . . , dw, t ≥ 1, and h ≥ 0 and that

E[|Yt+h(wk)− Yt+h(w′k)| | Ft−1] <∞. Then, for any deterministic wk, w
′
k ∈ W ,

GIRFk,t,h(wk, w
′
k | Ft−1) = E[{Yt+h(wk)− Yt+h(w′k)} | Ft−1] + ∆k,t,h(wk, w

′
k | Ft−1),

where

∆k,t,h(wk, w
′
k | Ft−1) :=

Cov (Yt+h(wk), 1{Wk,t = wk} | Ft−1)

E[1{Wk,t = wk} | Ft−1]
−Cov (Yt+h(w′k), 1{Wk,t = w′k} | Ft−1)

E[1{Wk,t = w′k} | Ft−1]
.

Proof: Given in Appendix.
Sufficient conditions for the selection bias term ∆k,t,h(wk, w

′
k | Ft−1) to equal zero is that

the two conditional covariances are zero. Repeating the unconditional case, Theorem 5 provides
sufficient conditions such that the selection bias term is equal to zero.

Theorem 5. Under the same conditions as Theorem 4, if

Cov (Yt+h(wk), 1{Wk,t = wk} | Ft−1) = 0, Cov (Yt+h(w′k), 1{Wk,t = w′k} | Ft−1) = 0, (9)

then ∆k,t,h(wk, w
′
k) = 0. Moreover, (9) is implied by

Wk,t ⊥⊥ Yt+h(wk) | Ft−1, and Wk,t ⊥⊥ Yt+h(w′k) | Ft−1, (10)

which is implied by

[Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}] | Ft−1, (11)

which is implied by

[Wk,t ⊥⊥
(
W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Yt+h(wobs

1:t−1, wt:t+h) : wt:t+h ∈ Wh+1}
)
] | Ft−1. (12)

Proof: Trivial.
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Therefore, under (9), the selection bias ∆k,t,h(wk, w
′
k | Ft−1) = 0 and the conditional impulse

response function identifies the filtered impulse causal effect. Notice how much weaker (12) is than
(6), as it allows the assignment to probabilistically depend flexibly on the past realised potential
outcomes and realised assignments — but the assignment needs to be independent of all future and
other contemporaneous assignments, as well as the future potential outcomes.

At first glance, (11) appears analogous to a typical unconfoundedness from cross-sectional
causal inference or sequential randomization assumption from longitudinal causal inference. That
is, it imposes that conditional on the history up to time t− 1, the assignment Wk,t must be as good
as randomly assigned. However, recall that the notation Yt+h(wk) buries dependence on (i) other
contemporaneous assignments W1:k−1,t,Wk+1:dW ,t; (ii) future assignments Wt+1:t+h; and (iii) the
potential outcomes at time-(t + h). Therefore, Theorem 5 provides in equation (12) further suffi-
cient conditions under which (11) is satisfied, highlighting that it is sufficient to further impose that
the assignment Wk,t is jointly independent of all other contemporaneous and future assignments as
well as the underlying potential outcomes.

Remark 3. How do the conditions in Theorem 2 relate to the conditions in Theorem 5?

Applying the law of total covariance yields

Cov(Yt+h(wk), 1{Wk,t = wk}) = E[Cov(Yt+h(wk), 1{Wk,t = wk} | Ft−1)] (13)

+ Cov(E[Yt+h(wk) | Ft−1],E[1{Wk,t = wk} | Ft−1]), (14)

so Cov(Yt+h(wk), 1{Wk,t = wk}) = 0 neither implies or is implied by Cov(Yt+h(wk), 1{Wk,t =

wk} | Ft−1)] = 0. Hence, the conditional and unconditional cases are non-nested.

If we work probabilistically then the condition

Wk,t ⊥⊥
(
W1:t−1,W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Y1:t+h(w1:t+h) : w1:t+h ∈ W t+h}

)
does imply the condition

[Wk,t ⊥⊥
(
W1:k−1,t,Wk+1:dW ,t,Wt+1:t+h, {Yt+h(wobs

1:t−1, wt:t+h) : wt:t+h ∈ Wh+1}
)
] | Ft−1.

This second point is important practically. The generalized impulse response function, tells

us the filtered treatment effect, under [Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}] | Ft−1. So a temporally

averaged generalized impulse response function tells us the average treatment effect without the

need to employ the harsher condition [Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}] as it sidesteps the use of

the impulse response function.
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3.4 Local Filtered Projection Estimand
Again, estimating the generalized impulse response functions nonparametrically is not easy. Under
the same conditions as Theorem 3 but replacing condition iii with equation (11), the filtered local
projection

Cov(Yt+h,Wk,t | Ft−1)

V ar(Wk,t | Ft−1)

equals ∫
Wk

E[Y ′t+h(wk) | Ft−1]E[Gt|t−1(wk) | Ft−1]dwk∫
Wk

E[Gt|t−1(wk) | Ft−1]dwk

,

where Gt|t−1(wk) = 1{wk ≤ Wk,t}(Wk,t − E[Wk,t | Ft−1]), noting E[Gt|t−1(wk) | Ft−1] ≥ 0.
That is, the filtered local projection is equivalent to a weighted average of conditional average
marginal effects of Wk,t on Yt+h, where the weights now depend on the natural filtration but still
are non-negative and sum to one.

Of more practice importance, is the local projection of Yt+h− Ŷt+h|t−1 on Wk,t− Ŵk,t|t−1. We
call this local filtered projection and it is defined as

E[{Yt+h − Ŷt+h|t−1}{Wk,t − Ŵk,t|t−1}]
E[{Wk,t − Ŵk,t|t−1}2]

which equals, under the same conditions as needed for the filtered local projection plus needing
the unconditional expectations to exist,∫

Wk
E
[
E[Y ′t+h(wk) | Ft−1]E[Gt|t−1(wk) | Ft−1]

]
dwk∫

Wk
E[Gt|t−1(wk)]dwk

,

This is a long-run weighted average of the marginal filtered causal effect. The weights are non-zero
and average to one over time.

An alternative to the generalized local projection is to replace the conditional expectations
Ŷt+h|t−1 and Ŵt+h|t−1 with best linear forecasts, based on the filtration.

4 The Instrumented Potential Outcome System
We now use a special case of the potential outcome system to encompass instrumental variables.
The instrumented potential outcome system will give instrument variable type statistics nonpara-
metric causal meaning. A rapidly growing literature in macroeconomics exploits the use of instru-
ments to identify dynamic causal effects (Jordá et al. (2015), Gertler and Karadi (2015), Stock and
Watson (2018), Plagborg-Møller and Wolf (2020), Jordá et al. (2020), Baek and Lee (2021) and
many others.) Section 5 details the case where researchers see the assignments, the instruments
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and the outcomes. Section 6 looks at where only the instruments and the outcomes are seen.
This work is closest to Jordá et al. (2020), who used a type of potential outcome structure

to understand the causal content of local projection-IV, relating it to the LATE interpretation of
instrumental variable regression developed in cross-sectional econometrics (Imbens and Angrist
(1994); Angrist et al. (1996)).

4.1 The Instrumented System
We start by setting up an artificial or “augmented assignment” Vt, so that

{
Vt,
{
Yt(v1:t) : v1:t ∈ W t

V

}}
t≥1

is assumed to be a potential outcome system. So far, there is nothing new.
The instrumented potential outcome system imposes two constraints on the potential out-

come system: (i) that {Vt}t≥1 splits into an “instrument” {Zt}t≥1 and the “potential assignment”
{Wt(zt) : zt ∈ W t

Z}t≥1, which is only moved by the contemporaneous instrument, so Vt =

{Zt,Wt(Zt)}; (ii) the potential outcomes are only moved by the assignment W1:t, in the usual way,
not all of V1:t. Definition 4 is a formal statement of this.

Definition 4 (Instrumented potential outcome system). Assume Wt ∈ WW , Zt ∈ WZ and write

Vt = (Wt, Zt). Assume
{
Vt,
{
Yt(v1:t) : v1:t ∈ (WW×WZ)t

}}
t≥1 is a potential outcome system.

Additionally, enforce three Assumptions:

i. The k-th “potential assignment”,

{
Wk,t({zs}s≥1)

}
t≥1 =

{
Wk,t(z

′
1:t−1, zt, {z′s}s≥t+1)

}
t≥1 ,

almost surely, for all deterministic {zt}t≥1, and {z′t}t≥1. For the other assignments: W1:k−1,t({zs}s≥1) =

W1:k−1,t({z′s}s≥1), and Wk+1:dW ,t({zs}s≥1) = Wk+1:dW ,t({z′s}s≥1) almost surely, for all de-

terministic {zt}s≥1 and {z′t}t≥1. Write the potential assignments as

{Wt(zt) = (W1:k−1,t,Wk,t(zt),Wk+1:dW ,t) : zt ∈ WZ},

while the assignment is

Wt = Wt(Zt) = (W1:k−1,t,Wk,t(Zt),Wk+1:dW ,t).

ii. That

Yt((w1, z1) , ..., (wt, zt)) = Yt((w1, z
′
1) , ..., (wt, z

′
t))
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for allw1:t ∈ W t
W and z1:t, z′1:t ∈ W t

Z . Write the potential outcomes as {Yt(w1:t) : w1:t ∈ W t
W}

and outcome as Yt = Yt(W1:t).

iii. The output is

{Zt,Wt, Yt}t≥1 = {Zt,Wt(Zt), Yt(W1:t)}t≥1,

while Zt and {Zt}t≥1 are called the “contemporaneous instrument,” and instrument process,

respectively. The realised output is observed and sometimes written as {zobst , wobs
t , yobst }t≥1.

Any

{Zt, {Wt(zt), zt ∈ WZ}, {Yt(w1:t), w1:t ∈ W t
W}}t≥1

satisfying (a)-(c) is an instrumented potential outcome system.

The classic case of this setup in cross-sectional studies in the presence of noncompliance. There
the instrument Zt = 1 corresponds to “intention to treat” and Zt = 0 is “intention to control”,
withWW ∈ {0, 1} andWZ ∈ {0, 1}. Then when Wt(1) = 1, there is treatment as intended while
Wt(0) = 0 corresponds to control as intended. But there can be noncompliance, when Wt(1) = 0

and Wt(0) = 1.
Assumption (ii) is the familiar outcome exclusion restriction on the instrument from cross-

sectional causal inference. Assumption (i) imposes that Zt is only an instrument for the time-
t, k-th assignment. This formalizes common empirical intuition in macroeconometrics where a
constructed external instrument is often “targeted” towards a single economic shock of interest
(e.g., researchers construct proxies for the monetary policy shock or fiscal policy shock).

To use this structure we also need a type of “relevance” condition. Such conditions will be
stated when it is used below.

5 Estimands Based on Assignments, Instruments and Outcomes
Here we study the nonparametric conditions under which some statistical estimands based on as-
signments, instruments and outcomes have causal meaning in the context of an instrumented po-
tential outcome system

{Zt, {Wt(zt), zt ∈ WZ}, {Yt(w1:t), w1:t ∈ W t
W}}t≥1,

where researchers see the instruments, the assignments and the outcomes

{zobst , wobs
t , yobst }t≥1.

Here the assignments themselves are directly observable, and so the researcher constructs a
dynamic IV estimand that takes the ratio of an impulse response function of the outcome on the
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Name Estimand Causal Interpretation

Wald E[Yt+h|Zt=z]−E[Yt+h|Zt=z′]
E[Wk,t|Zt=z]−E[Wk,t|Zt=z′]

∫
W E[Y ′t+h(wk)|Ht(wk)=1]E[Ht(wk)]dwk∫

W E[Ht(wk)]dwk

IV Cov(Yt+h,Zt)

Cov(Wt,Zt)

∫
WZ

E[Y ′∗,t+h(zt)]E[Gt(zt)]dzt∫
WZ

E[W ′t (zt)]E[Gt(zt)]dzt

Generalized E[Yt+h|Zt=z,Ft−1]−E[Yt+h|Zt=z′,Ft−1]

E[Wk,t|Zt=z,Ft−1]−E[Wk,t|Zt=z′,Ft−1]

∫
W E[Y ′t+h(wk)|Ht(wk)=1,Ft−1]E[Ht(wk)|Ft−1]dwk∫

W E[Ht(wk)|Ft−1]dwk

Wald

Filtered IV E[(Yt+h−Ŷt+h)(Zt−Ẑt)]

E[(Wt−Ŵt)(Zt−Ẑt)]

∫
WZ

E[E[Y ′∗,t+h(zt)|Ft−1]E[Gt(zt)|Ft−1]]dzt∫
WZ

E[E[W ′t (zt)|Ft−1]E[Gt(zt)|Ft−1]]dzt

Table 2: Top line results for the causal interpretation of common estimands based on assignments, instru-
ments and outcomes. Here Ht(wk) = 1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}, Gt(zt) = 1{zt ≤ Zt}(Zt − E[Zt])

and Gt|t−1(zt) = 1{zt ≤ Zt}(Zt − E[Zt] | Ft−1]), while Ŷt+h|t−1 = E[Yt+h | Ft−1], Ẑt = E[Zt | Ft−1]

and Ŵt = E[Wt | Ft−1]. Note that E[Gt(zt)] ≥ 0 and E[Gt|t−1(zt) | Ft−1] ≥ 0.

instrument relative to the impulse response function of the assignment on the instrument. We
show that such dynamic IV estimands identify local average impulse causal effects in the sense of
Imbens and Angrist (1994); Angrist et al. (1996, 2000).

In particular, we ask if, for h ≥ 0 and fixed z, z′ ∈ WZ , the following statistical estimands
have causal meaning: Wald, IV, generalized Wald, and filtered IV. These estimands are defined in
the middle column of Table 2. The right hand column of Table 2 gives their interpretation under
some important restrictions on the assignments and instruments and some additional technical
conditions. The rest of this Section will spell out the details.

5.1 Wald Estimand
Under an instrumented potential outcome system the Wald estimand is

E[Yt+h | Zt = z]− E[Yt+h | Zt = z′]

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′]
.

The numerator of the Wald estimand is the impulse response of the outcome Yt+h on the
instrument Zt, which can be thought of as the “reduced-form.” The denominator of the the Wald
estimand is the impulse response function of the assignment Wk,t on the instrument Zt, which can
be thought of as the “first-stage.” Therefore, the Wald estimand is equals a ratio of a reduced-form
impulse response function to a first-stage conditional impulse response function, and therefore is a
natural time series generalization of the Wald estimand from cross-sectional causal inference.

Our next result establishes that the Wald estimand identifies a weighted average of marginal
causal effects for “compliers” provided that (i) the potential outcome process is continuously differ-
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entiable in the assignment; (ii) satisfies a standard monotonicity condition as introduced in Imbens
and Angrist (1994); (iii) the instrument is independent of the potential assignment and outcome
processes; (iv) is a type of relevance condition.

Theorem 6. Assume an instrumented potential outcome system, fix z, z′ ∈ WZ and that

i. The Yt+h(wk) is continuously differentiable in the closed intervalwk ∈ Wk := [wk, wk] ⊂ R.

ii. Wk,t(z
′) ≤ Wk,t(z) with probability one.

iii. The instrument satisfies

[Zt ⊥⊥ {Wk,t(z) : z ∈ WZ}], [Zt ⊥⊥ {Yt+h(wk) : wk ∈ Wk}]. (15)

iv.
∫
W E[1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}]dwk > 0.

Then Wald estimand equals, so long as it exists,∫
W E[Y ′t+h(wk)|Ht(wk) = 1]E[Ht(wk)]dwk∫

W E[Ht(wk)]dwk

,

where Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}.

Proof: Given in Appendix.
Assumption iii says that the instrument is randomly allocated. This implicitly restricts the

relationship between:

1. the instrument Zt and other assignments W1:k−1,t:t+h,Wk+1:dW ,t:t+h;

2. the instrument Zt and future and past potential assignments

{W1:t−1(z1:t−1),Wt+1:t+h(zt+1:t+h) : z1:t−1 ∈ Z t, zt+1:t+h ∈ Zh};

3. the instrument Zt and its future and past values Z1:t−1 and Zt+1:t+h; and

4. the instrument Zt and the potential outcome process {Yj,t+h(w1:t+h) : w1:t+h ∈ W t+h}.

Remark 4 (Binary Assignment, Binary Instrument Case). Assume Wk,t ∈ {0, 1}, Zt ∈ {0, 1} and

z = 1, z′ = 0. In this case, although the math is different due to the discreteness of the assignment

and instrument, under the same conditions as Theorem 8, we can show that the conditional IV

estimand IVk,t,h becomes

E[{Yt+h(1)− Yt+h(0)} | Wk,t(1)−Wk,t(0) = 1].
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a local average treatment effect.

5.2 IV Estimand
The instrumental regression of Yt+h on Wt using the instrument Zt is

IVk,t,h :=
Cov(Yt+h, Zt)

Cov(Wt, Zt)
.

This has a causal interpretation by twice applying the local projection estimand from Theorem 3,
once on the nominator for the local projection of Yt+h on Zt, once on the denominator for the local
projection of Wt on Zt.

The statement of the results uses the notation

Y∗,t+h(zt) = Yt+h(W1:t−1,Wt,1:k−1,Wk(zt),Wt,k+1:dW ,Wt+1:t+h),

and Y ′∗,t+h(zt) = ∂Y∗,t+h(zt)/∂zt.

Theorem 7. Assume an instrumented potential outcome system. Further assume that

i. The support of Zt is a closed intervalWZ : [z, z] ⊂ R.

ii. Y∗,t+h(z) and that Wt(z) are continuously differentiable in z ∈ WZ .

iii. The

Zt ⊥⊥ {Wt(z) : z ∈ WZ}, Zt ⊥⊥ {Y∗,t+h(z) : z ∈ WZ},

iv. The
∫
WZ

E[W ′
t(zt)]E[Gt(zt)]dzt 6= 0.

Then, it follows, if it exists, that

IVk,t,h =

∫
WZ

E[Y ′∗,t+h(zt)]E[Gt(zt)]dzt∫
WZ

E[W ′
t(zt)]E[Gt(zt)]dzt

where Gt(zt) = 1{zt ≤ Zt}(Zt − E[Zt]), noting E[Gt(zt)] ≥ 0.

Proof. Application of Theorem 3, twice, once on the numerator and once on the demoninator.
Assumption iv is a type of relevance condition.

5.3 Generalized Wald Estimand
The generalized Wald estimand is given by, for fixed z, z′ ∈ WZ ,

GWk,t,h :=
E[Yt+h | Zt = z,Ft−1]− E[Yt+h | Zt = z′,Ft−1]

E[Wk,t | Zt = z,Ft−1]− E[Wk,t | Zt = z′,Ft−1]
. (16)
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It equals a ratio of a reduced-form generalized impulse response function to a first-stage general-
ized impulse response function.

Theorem 8. Assume an instrumented potential outcome system, fix z, z′ ∈ WZ and that

i. The Yt+h(wk) is continuously differentiable in the closed intervalwk ∈ Wk := [wk, wk] ⊂ R.

ii. Wk,t(z
′) ≤ Wk,t(z) with probability one.

iii. The instrument satisfies

[Zt ⊥⊥ {Wk,t(z) : z ∈ WZ}] | Ft−1, [Zt ⊥⊥ {Yt+h(wk) : wk ∈ Wk}] | Ft−1. (17)

iv.
∫
W E[1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)} | Ft−1]dwk > 0.

For a potential outcome system with an external instrument, GWk,t,h equals, so long as it exists,∫
W E[Y ′t+h(wk) | Ht(wk) = 1,Ft−1]E[Ht(wk) | Ft−1]dwk∫

W E[Ht(wk) | Ft−1]dwk

,

where, again, Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}.

Proof: Given in Appendix.
Therefore, the conditional Wald estimand is equal to a weighted average of the marginal causal

effects for “compliers” (i.e., realizations of the potential treatment function for which moving the
instrument from z′ to z changes the assignment). The marginal causal effect is the derivative of
the h-step ahead potential outcome process with respect to the k-th assignment, holding all else
constant. The weights are proportional to the probability of the potential assignment function being
a “complier,” so are non-negative and sum to 1.

We next provide a sufficient condition for the instrument to be randomly assigned in terms of
conditional independence restrictions on these underlying processes.

Theorem 9. Assume that the instrument satisfies

Zt ⊥⊥
(
Zt+1:t+h,W1:k−1,t:t+h, {Wk,t+1:t+h(zt+1:t+h) : zt+1:t+h ∈ Zh},Wk+1:dW ,t:t+h,{

Yt+h(w1:t+h) : w1:t+h ∈ W t+h}
)
| Ft−1.

Then, Assumption iii in Theorem 8 is satisfied.

Proof: Trivial.
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5.4 Filtered IV Estimand
Estimating generalized Wald estimand is not easy, particularly if Zt is not discrete. Here we derive
a causal interpretation for generalized IV estimand

GIVk,t,h :=
Cov(Yt+h, Zt | Ft−1)

Cov(Wt, Zt | Ft−1)
=

E[(Yt+h − Ŷt+h)(Zt − Ẑt) | Ft−1]

E[(Wt − Ŵt)(Zt − Ẑt) | Ft−1]
.

where Ŷt+h = E[Yt+h | Ft−1], Ŵt = E[Wt | Ft−1] and Ẑt+h = E[Zt+h | Ft−1].
No new technical issue arise in dealing with this setup, but condition iii in Theorem 7 becomes

[Zt ⊥⊥ {Y∗,t+h(z) : z ∈ WZ}] | Ft−1, [Zt ⊥⊥ {Wt(z) : z ∈ WZ}] | Ft−1, (18)

which are much easier to think about. Then GIVk,t,h equals∫
WZ

E[Y ′∗,t+h(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]dzt∫
WZ

E[W ′
t(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]dzt

where Gt|t−1(zt) = 1{zt ≤ Zt}(Zt − E[Zt | Ft−1]), noting E[Gt|t−1(zt) | Ft−1] ≥ 0.
Of more practical importance is the filtered IV estimand

E[(Yt+h − Ŷt+h)(Zt − Ẑt)]

E[(Wt − Ŵt)(Zt − Ẑt)]
,

which can be estimated by instrumental variables applied to Yt+h − Ŷt+h on Wt − Ŵt with instru-
ments Zt− Ẑt. Then, again, under the conditions of Theorem 7 but using (18) instead of condition
iii, then the filtered IV estimand becomes∫

WZ
E[E[Y ′∗,t+h(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]]dzt∫

WZ
E[E[W ′

t(zt) | Ft−1]E[Gt|t−1(zt) | Ft−1]]dzt
.

6 Estimands Based on Instruments and Outcomes
In this section, we study the nonparametric conditions under which some statistical estimands
based on instruments and outcomes have causal meaning in the context of an instrumented potential
outcome system

{Zt, {Wt(zt), zt ∈ WZ}, {Yt(w1:t), w1:t ∈ W t
W}}t≥1,

where researchers only see the instruments and the outcomes

{zobst , yobst }t≥1.
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In this framework we will sometimes refer to {FZ,Y
t }t≥1 as the natural filtration generated by

the realized {zobst , yobst }t≥1, while z, z′ ∈ WZ . Throughout we follow the literature and estimate
terms which involve possibly two elements of the outcome vector, Yj,t+h and Yk,t, and so we return
to using a explicit subscript on the outcome variable.

In this context, researchers constructs a dynamic IV estimand that takes the ratio of an impulse
response function of the outcome on the instrument and the impulse response function of the lagged
outcome on the instrument. We show that such dynamic IV estimands identify “relative” local
average impulse causal effect, which is a nonparametrically generalization of the interpretation
of such a dynamic IV estimand in existing literature on external instruments (Stock and Watson,
2018; Plagborg-Møller and Wolf, 2020; Jordá et al., 2020).

As mentioned, this mirrors the typical construct of external IV estimates of impulse response
functions in macroeconomics. Consider, for example, an empirical researcher that constructs an
instrument Zt for the monetary policy shock (e.g., an instrument of the form used in Kuttner
(2001); Cochrane and Piazessi (2002); Faust et al. (2003); Gurkaynak et al. (2005); Bernanke and
Kuttner (2005); Gertler and Karadi (2015) or Romer and Romer (2004)). In this case, the empirical
researcher will estimate attempt to measure the dynamic causal effect of the monetary policy shock
Wk,t on unemployment Yj,t+h by estimating the first-stage impulse response function of the federal
funds rate Yk,t on the instrument Zt. See, for example, Jordá et al. (2015); Ramey (2016); Jordá
et al. (2020); Ramey and Zubairy (2018) for recent applications.

These results underscore the value of external instruments in macroeconometric research as
we show that external instruments can be used to identify nonparametric causal estimands without
functional form assumptions and without observing the assignment.

In particular, we ask if, for h ≥ 0 and fixed z, z′ ∈ WZ , the following statistical estimands have
causal meaning: Ratio Wald, Local Projection IV, generalized Ratio Wald, and the local filtered
projection IV. These estimands are defined in the middle column of Table 3. The top line results
are they have the interpretation given in the right hand column of Table 3 under some important
restrictions on the assignments and instruments and some additional technical conditions. The rest
of this Section will spell out the details.

6.1 Ratio Wald Estimand
The Ratio Wald Estimand

E[Yj,t+h | Zt = z]− E[Yj,t+h | Zt = z′]

E[Yk,t | Zt = z]− E[Yk,t | Zt = z′]
,
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Name Estimand Causal Interpretation

Ratio Wald E[Yj,t+h|Zt=z]−E[Yj,t+h|Zt=z′]
E[Yk,t|Zt=z]−E[Yk,t|Zt=z′]

∫
W E[Y ′j,t+h(wk)|Ht(wk)=1]E[Ht(wk)]dwk∫
W E[Y ′k,t(wk)|Ht(wk)=1]E[Ht(wk)]dwk

Local Projection Cov(Yj,t+h,Zt)
Cov(Yk,t,Zt)

∫
WZ

E[Y ′j,t+h(zk)]E[Gt(zk)]dzk∫
WZ

E[Y ′k,t(zk)]E[Gt(zk)]dzk

IV

Generalized Ratio
E[Yj,t+h|Zt=z,FZ,Y

t−1 ]−E[Yj,t+h|Zt=z′,FZ,Y
t−1 ]

E[Yk,t|Zt=z,FZ,Y
t−1 ]−E[Yk,t|Zt=z′,FZ,Y

t−1 ]

∫
W E[Y ′j,t+h(wk)|Ht(wk)=1,FZ,Y

t−1 ]E[Ht(wk)|FZ,Y
t−1 ]dwk∫

W E[Y ′k,t(wk)|Ht(wk)=1,FZ,Y
t−1 ]E[Ht(wk)|FZ,Y

t−1 ]dwk

Wald

Local Filtered Cov(Yj,t+h−Ŷj,t+h,Zt−Ẑt)

Cov(Yj,t−Ŷk,t,Zt−Ẑt)

∫
WZ

E[E[Y ′j,t+h(zk)|F
Z,Y
t−1 ]E[Gt(zk)|FZ,Y

t−1 ]]dzk∫
WZ

E[E[Y ′k,t(zk)|F
Z,Y
t−1 ]E[Gt(zk)|FZ,Y

t−1 ]]dzk

Projection IV

Table 3: Top line results for the causal interpretation of common estimands based on instruments and
outcomes. Here Ht(wk) = 1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}, Gt(zt) = 1{zt ≤ Zt}(Zt − E[Zt]) and
Gt|t−1(zt) = 1{zt ≤ Zt}(Zt − E[Zt | FZ,Y

t−1 ), while Ŷt+h|t−1 = E[Yt+h | FZ,Y
t−1 ] and Ẑt = E[Zt | FZ,Y

t−1 ].
Note that E[Gt(zt)] ≥ 0 and E[Gt|t−1(zt) | F

Z,Y
t−1 ] ≥ 0.

which is the ratio of the Wald estimands:

E[Yj,t+h | Zt = z]− E[Yj,t+h | Zt = z′]

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′]
, to

E[Yk,t | Zt = z]− E[Yk,t | Zt = z′]

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′]
.

Hence we just need to collect the conditions for the validity of their causal representations. This is
carried out in the following Corollary.

Corollary 1. Assume an instrumented potential outcome system, z, z′ ∈ WZ and that

i. Yk,t(wk), Yj,t+h(wk) are continuously differentiable in closed intervalWk := [wk, wk] ⊂ R.

ii. Wk,t(z
′) ≤ Wk,t(z) with probability one.

iii. The instrument satisfies

[Zt ⊥⊥ {Wk,t(z) : z ∈ WZ}], [Zt ⊥⊥ {Yk,t(wk), Yj,t+h(wk) : wk ∈ Wk}]. (19)

iv.
∫
W E[Y ′k,t(wk) | Ht(wk) = 1]E[Ht(wk)]dwk 6= 0.

Then the Ratio Wald Estimand equals, if it exists and Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)},∫

W E[Y ′k,t+h(wk) | Ht(wk) = 1]E[Ht(wk)]dwk∫
W E[Y ′k,t(wk) | Ht(wk) = 1]E[Ht(wk)]dwk

.

Proof. It is implied by Theorem 6, used twice.
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6.2 Local Projection IV Estimand
The local projection IV estimand

Cov(Yj,t+h, Zt)

Cov(Yk,t, Zt)
,

is the ratio of the IV estimands

Cov(Yj,t+h, Zt)

Cov(Wt, Zt)
, to

Cov(Yk,t, Zt)

Cov(Wt, Zt)
.

Hence we just need to collect the conditions for the validity of their causal representations. This is
carried out in the following Corollary.

Corollary 2. Assume an instrumented potential outcome system. Further assume that

i. WZ : [z, z] ⊂ R, a closed interval.

ii. Yj,t(z), Yk,t+h(z),Wt(z) are continuously differentiable in z ∈ WZ .

iii. The

Zt ⊥⊥ {Yk,t(z), Yj,t+h(z) : z ∈ WZ}, Zt ⊥⊥ {Wt(z) : z ∈ WZ}.

iv. The
∫
WZ

E[Y ′k,t(zt)]E[Gt(zt)]dzt 6= 0.

Then the local projection IV estimand equals∫
WZ

E[Y ′j,t+h(zk)]E[Gt(zk)]dzk∫
WZ

E[Y ′k,t(zk)]E[Gt(zk)]dzk
,

where Gt(zk) = 1{zk ≤ Zt}(Zt − E[Zt]), noting E[Gt(zk)] ≥ 0.

Proof. It is implied by Theorem 7, used twice.

6.3 Generalized Ratio Wald Estimand
It is common for researchers to estimate the generalized ratio Wald estimand:

E[Yj,t+h | Zt = z,FZ,Y
t−1 ]− E[Yj,t+h | Zt = z′,FZ,Y

t−1 ]

E[Yk,t | Zt = z,FZ,Y
t−1 ]− E[Yk,t | Zt = z′,FZ,Y

t−1 ]
,

the ratio of generalized impulse response functions at different lags, for different outcome vari-
ables. But this is the ratio of two generalized Wald estimands.

Corollary 3. Assume an instrumented potential outcome system, z, z′ ∈ WZ and that
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i. Yk,t(wk), Yj,t+h(wk) are continuously differentiable in closed intervalWk := [wk, wk] ⊂ R.

ii. Wk,t(z
′) ≤ Wk,t(z) | FZ,Y

t−1 with probability one.

iii. The instrument satisfies

[Zt ⊥⊥ {Wk,t(z) : z ∈ WZ}] | FZ,Y
t−1 , [Zt ⊥⊥ {Yk,t(wk), Yj,t+h(wk) : wk ∈ Wk}] | FZ,Y

t−1 .

iv.
∫
W E[Y ′k,t(wk) | Ht(wk) = 1,FZ,Y

t−1 ]E[Ht(wk) | FZ,Y
t−1 ]dwk 6= 0.

Then, generalized ratio Wald estimand equals, where Ht(wk) = 1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)},∫

W E[Y ′k,t+h(wk) | Ht(wk) = 1,FZ,Y
t−1 ]E[Ht(wk) | FZ,Y

t−1 ]dwk∫
W E[Y ′k,t(wk) | Ht(wk) = 1,FZ,Y

t−1 ]E[Ht(wk) | FZ,Y
t−1 ]dwk

.

Proof. It is implied by Theorem 8, used twice.
In words, the conditional IV estimand above identifies a relative local average impulse causal

under the potential outcome system. The numerator and the denominator have the same interpreta-
tion as Theorem 8. In particular, the numerator is a weighted average of the marginal causal effects
of Wk,t on the h-step ahead outcome Yj,t+h, where the weights are proportional to the probability
of compliance. Similarly, the denominator is a weighted average of the marginal causal effects
of Wk,t on the contemporaneous outcome Yk,t. Therefore, we can interpret their ratio as measur-
ing the causal response of the h-step ahead outcome Yj,t+h to a change in the treatment Wk,t that
increases the contemporaneous outcome Yk,t by one unit on impact (among compliers).

This is a nonparametric generalization of the result that in linear SVMA models (without in-
vertibility) the IV based estimands identify relative impulse response functions (Stock and Watson
(2018); Plagborg-Møller and Wolf (2020)). This result makes no functional form assumptions nor
standard time series assumptions such as invertibility or recoverability. In this sense, Corollary
3 highlights the attractiveness of using external instruments to measure dynamic causal effects in
observational time series data. Provided there exists an external instrument for the treatment Wk,t,
then the researcher can robustly identify causally interpretable estimands without further assump-
tions and without even directly observing the treatment itself.

6.4 Local Filtered Projection IV Estimand
In practice researchers typically estimate generalized impulse response functions using a two-stage
least-squares type estimator. This is also sometimes called “local projections with an external
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instrument” (Jordá et al., 2015). We first analyze this generalized local projection IV

Cov(Yj,t+h, Zt | FZ,Y
t−1 )

Cov(Yk,t, Zt | FZ,Y
t−1 )

, (20)

which again is a ratio, this time of the Generalized IV estimands at different lag lengths. Using the
same arguments as Corollary 2, it has the causal interpretation∫

WZ
E[Y ′j,t+h(zk) | FZ,Y

t−1 ]E[Gt(zk) | FZ,Y
t−1 ]dzk∫

WZ
E[Y ′k,t(zk) | FZ,Y

t−1 ]E[Gt(zk) | FZ,Y
t−1 ]dzk

,

where Gt|t−1(zk) = 1{zk ≤ Zt}(Zt − E[Zt | FZ,Y
t−1 ]).

Of more practical relevance, is the local filtered projection IV estimand is

Cov(Yj,t+h − Ŷj,t+h, Zt − Ẑt)

Cov(Yk,t − Ŷk,t, Zt − Ẑt)
,

where Ŷt+h = E[Yt+h | FZ,Y
t−1 ], Ŷt = E[Yt | FZ,Y

t−1 ] and Ẑt+h = E[Zt+h | FZ,Y
t−1 ]. The properties of

this are inherited from those of the generalized local projection IV. In particular it equals∫
WZ

E[E[Y ′j,t+h(zk) | FZ,Y
t−1 ]E[Gt(zk) | FZ,Y

t−1 ]]dzk∫
WZ

E[E[Y ′k,t(zk) | FZ,Y
t−1 ]E[Gt(zk) | FZ,Y

t−1 ]]dzk
.

7 Estimands Based Only on Outcomes
The dominant approach to causal inference in macroeconometrics is a model-based approach in
the tradition of Sims (1980). In that literature, researchers introduce parametric models as they
wish to study the dynamic causal effects of unobservable “structural shocks,” which themselves
must be inferred from the outcomes. Here we link this to our setup, mostly to place our work in
context. Assume there is a potential outcome system

{Wt, {Yt(w1:t) : w1:t ∈ W t
w}t≥1,

where researchers only see the outcomes

{yobst }t≥1.
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7.1 Linear simultaneous equation approach
The causal inference approach of using only time series data on outcomes is in the storied tradition
of linear simultaneous equations models developed at the Cowles Foundation (e.g. Christ (1994),
Hausman (1983)). The time series aspects are mostly technical, the most essential causal ideas
appear in the cross-section, so we start there.

The approach is model-based, here we focus on the linear case

A0Yt(w1:t) = α + wt, w1:t ∈ W t, t = 1, 2, ...,

where A0 is a non-stochastic, square matrix. Notice that in this model the potential outcomes are
not stochastic — this linear case says that linear combinations of the potential outcomes equal the
possible assignments for every t.

Now additionally assume that A0 is invertible, then

Yt(w1:t) = A−10 (α + wt) ,
∂Yt(w1:t)

∂wT
t

= A−10 ,

and the contemporaneous average treatment effect

E[Yt(W1:t−1, w)− Yt(W1:t−1, w
′)] = Yt(W1:t−1, w)− Yt(W1:t−1, w

′)

= A−10 (w − w′) ,

whatever probabilistic assumption is made about W1:t−1. Under this model, if we see (Wt, Yt) =

{Wt, Yt(W1:t)}, then, if the second moments of the observables exist and Var(Wt) is non-singular,
then for every t,

Cov(Yt,Wt)Var(Wt)
−1 = A−10 ,

which would make statistical inference rather straightforward. But the point of this simultaneous
equations literature is to carry out inference without observing the assignments — which is a much
harder task.

If, in addition to A0 being invertible, we assume that Var(Wt) <∞, then

Var(Yt) = A−10 Var(Wt)
(
A−10

)T
,

Crucially knowing Var(Yt) is not enough to untangle A0 and Var(Wt), and so is not enough alone
to learn the contemporaneous average treatment effect. In the simultaneous equations literature
this is resolved by a priori imposing more structure on the problem. This can be carried out in
many different ways, inspired by the problem at hand.
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A central a priori constraint is the one highlighted by Sims (1980). He imposed that (a) A0 is
triangular, (b) Var(Wt) is diagonal. For simplicity of exposition, look at the two dimensional case
and write

A0 =

(
1 0

−a21 1

)
, A−10 =

(
1 0

a21 1

)
, Var(Wt) =

(
σ2
11 0

0 σ2
22

)
,

then the elements within A0 and Var(Wt) can be individually determined from Var(Yt) if Var(Yt)

is of full rank. The same holds in higher dimensions. Hence under a priori restrictions, the con-
temporaneous causal effect can be determined from the data on the outcomes, without having seen
the assignments (or without the access to instruments). There are alternative a priori constraints
to this triangular which also work here and the above structure extends to non-linear systems of
equations g {Yt(w1:t)} = wt.

The “structural vector autoregressive” (SVAR) version of the linear simultaneous equation has
the same fundamental structure. focusing on the one lag model with no intercept for simplicity, the

A0Yt(w1:t) = wt + A1Yt−1(w1:t−1).

Kilian and Lutkepohl (2017) provide a book length review of this model structure and its various
extensions and implications.

Then A0 (I − Φ1L)Yt(w1:t) = wt, where L is a lag operator and Φ1 = A−10 A1. So

Yt(w1:t) = A−10 wt + Φ1Yt−1(w1:t−1),

which implies that

Yt(w1:t) = A−10 wt + Φ1A
−1
0 wt−1 + Φ2

1A
−1
0 wt−2 + ...+ Φt−1

1 A−10 w1 + Φt
1A
−1
0 Y0

a SVMA model. Then
∂Yt+h(w1:t+h)/∂w′t = Φh

1A
−1
0 ,

and the impulse response function

E[Yt+h(W1:t−1, w,Wt+1:t+h)− Yt+h(W1:t−1, w
′,Wt+1:t+h)] = Φh

1A
−1
0 (w − w′) .

The time series parameter Φ1 can be determined from the dynamics of the data if this process is
stationary. But again A0 and Var(Wt) cannot be seperately pulled apart from the data, so a priori
model assumptions are needed. The triangular assumption on A0, pioneered by Sims (1980), is
popular for SVAR models. Imposing that assumption takes the causal problem back to a standard
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parametric statistical inference problem of working with vector autoregressions.

7.2 Causal meaning of the GIRF of Yk,t on Yj,t+h

A broader analysis focuses on the h-step ahead generalized impulse response function of the k-th
outcome on the j-th outcome. Here we provide a nonparametric causal meaning to it in terms of
potential outcomes.

Assumption 5. Assume a potential outcome system. If Yt(w1:t) is deterministic for all w1:t ∈ W t,

then this is called a deterministic potential outcome system.

Assumption 6. For a deterministic potential outcome system, additionally assume that (a) for all

t 6= s, the Wt ⊥⊥ Ws; (b) that Wk,t ⊥⊥ Wj,t for all j 6= k.

Theorem 10 quantifies what causally happens to the conditional expectations of potential out-
comes when the conditional distribution of the entire W1:t shifts due to moves in conditioning on
Yk,t. This has some intellectual connections to the non-GIRF stochastic intervention work of, for
example, Stock (1989); Munoz and van der Laan (2012); Wu et al. (2021); Papadogeorgou et al.
(2019)).

Theorem 10. Assume a deterministic potential outcome system and that Assumption 6(a) holds.

Then, so long as the corresponding moments exist,

E[Yj,t+h|(Yk,t = yk),FY
t−1]− E[Yj,t+h|(Yk,t = y′k),FY

t−1] (21)

= E[ψj,t+h(W1:t)|(Yk,t = yk),FY
t−1]− E[ψj,t+h(W1:t)|(Yk,t = y′k),FY

t−1], (22)

where ψj,t+h(w1:t) := E[Yj,t+h(w1:t,Wt+1:t+h)].

Proof. Given in the Appendix.
Overall this is quite a complicated causal effect, as it allows all the assignments from time 1 to

time t to move.

8 Conclusion
This paper sets out a nonparametric foundation for making causal statements from time series
of outcomes, assignments and instruments. The potential outcome system, and the instruments
version, sets out how outcomes move with assignments.

The foundation is used to derive conditions under which common statistical estimands, such
as impulse response functions and local projection, have causal meaning.

The paper split this analysis into three sets. The first was where outcomes and assignments are
seen. The second is where outcomes, assignments and instruments are observed. The final sets is
where only outcomes and instruments are observed.
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A Proofs of Results for Assignments and Outputs

A.1 Proof of Theorem 1

To prove this result, we begin by rewriting E[Yj,t+h1{Wk,t = wk}]. Notice that

E[Yj,t+h1{Wk,t = wk}]

= E[Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h)1{Wk,t = wk}]

= E[Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h)]E[1{Wk,t = wk}]

+Cov (Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk}) .

Therefore, it immediately follows that

E[Yj,t+h | Wk,t = wk] = E[Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h)]
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+
Cov (Yj,t+h(W1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk})

E[1{Wk,t = wk}]
.

The result is then immediate by (i) applying the same calculation to E[Yj,t+h1{Wk,t = w′k}], (ii)

taking the difference, and (iii) applying the definition of Yj,t+h(wk). �

A.2 Proof of Theorem 3

The style proof extends Angrist et al. (2000) in their analysis of the cross-sectional Wald estimator

in the cross-section. Begin by writing Yt+h = Yt+h(Wk,t) as

Yt+h = Yt+h(wk) +

∫ Wk,t

wk

∂Yt+h(w̃k)

dw̃k

∂w̃k

= Yt+h(wk) +

∫ wk

wk

∂Yt+h(w̃k)

∂w̃k

1{w̃k ≤ Wk,t}dw̃k

by the fundamental theorem of calculus. Then, it follows that

Cov(Yt+h,Wk,t) = E[Yt+h(Wk,t − E[Wk,t])]

(1)
= E[(Yt+h − Yt+h(wk))(Wk,t − E[Wk,t])

= E

[(∫ wk

wk

∂Yt+h(w̃k)

∂w̃k

1{w̃k ≤ Wk,t}dw̃k

)
(Wk,t − E[Wk,t])

]

=

∫ wk

wk

E
[
∂Yt+h(w̃k)

∂w̃k

1{w̃k ≤ Wk,t}(Wk,t − E[Wk,t])

]
dw̃k

(2)
=

∫ wk

wk

E
[
∂Yt+h(w̃k)

∂w̃k

]
E [1{w̃k ≤ Wk,t}(Wk,t − E[Wk,t])] dw̃k

where (1) and (2) follow since Wk,t ⊥⊥ {Yt+h(wk) : wk ∈ Wk}. Interchanging the order of the

derivation and the expectation delivers the result. Analogously,

Wk,t = wk +

∫ Wk,t

wk

dw̃k = wk +

∫ wk

wk

1{w̃k ≤ Wk,t}dw̃k,

so

V ar(Wk,t) = E[(Wk,t − wk)(Wk,t − E[Wk,t])] =

∫ wk

wk

E [1{w̃k ≤ Wk,t}(Wk,t − E[Wk,t])] dw̃k.
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The result then follows immediately. To see that the resulting weights are non-negative, observe

that for w̃k ∈ [wk, wk]

E [1{Wk,t ≥ w̃k} (Wk,t − E[Wk,t])]

= E [1{Wk,t ≥ w̃k}Wk,t]− E[1{Wk,t ≥ w̃k}]E[Wk,t]

= (E [Wk,t | Wk,t ≥ w̃k]− E[Wk,t])P(Wk,t ≥ w̃k) ≥ 0

since E [Wk,t | Wk,t ≥ w̃k] ≥ E[Wk,t] for w̃k ∈ [wk, wk]. �

A.3 Proof of Theorem 4

The proof is analogous to the proof of Theorem 1. We start by rewriting E[Yj,t+h1{Wk,t = wk} |
Ft−1], noticing that

E[Yj,t+h1{Wk,t = wk} | Ft−1]

= E[Yj,t+h(wobs
1:t−1, wk,W−k,t,Wt+1:t+h)1{Wk,t = wk} | Ft−1]

= E[Yj,t+h(wobs
1:t−1, wk,W−k,t,Wt+1:t+h) | Ft−1]E[1{Wk,t = wk} | Ft−1]

+Cov
(
Yj,t+h(wobs

1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk} | Ft−1
)
.

Therefore, we have shown that

E[Yj,t+h | Wk,t = wk,Ft−1] = E[Yj,t+h(wobs
1:t−1, wk,W−k,t,Wt+1:t+h) | Ft−1]

+
Cov

(
Yj,t+h(wobs

1:t−1, wk,W−k,t,Wt+1:t+h), 1{Wk,t = wk} | Ft−1
)

E[1{Wk,t = wk} | Ft−1]
.

The result follows by (i) applying the same calculation to E[Yj,t+h1{Wk,t = w′k} | Ft−1], (ii) taking

the difference, and (iii) applying the definition of the potential outcome Yj,t+h(wk). �

B Proofs of Results for Assignments, Instruments and Outputs

B.1 Proof of Theorem 6

To prove this result, we first observe that

E[Yj,t+h | Zt = z] = E[Yj,t+h(wobs
1:t−1,Wk,t(z),W−k,t,Wt+1:t+h) | Zt = z]

= E[Yj,t+h(wobs
1:t−1,Wk,t(z),W−k,t,Wt+1:t+h)]
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by (iii). Therefore,

E[Yj,t+h | Zt = z]− E[Yj,t+h | Zt = z′]

= E[Yj,t+h(wobs
1:t−1,Wk,t(z),W−k,t,Wt+1:t+h)− Yj,t+h(wobs

1:t−1,Wk,t(z
′),W−k,t,Wt+1:t+h)].

Next, we can further rewrite this previous expression as

E[

∫ Wj,t(z)

Wj,t(z′)

∂Yj,t+h(wk)

∂wk

dwk] = E[

∫
W

∂Yj,t+h(wk)

∂wk

1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}dwk]

where we used the definition Yj,t+h(wk) := Yj,t+h(W1:t−1, wk,t,W−k,t,Wt+1:t+h). Finally, assum-

ing that we can exchange the order of integration and expectation, we arrive at∫
W
E[
∂Yj,t+h(wk)

∂wk

1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}]dwk

=

∫
W
E[
∂Yj,t+h(wk)

∂wk

,Wk,t(0) ≤ wk ≤ Wk,t(1)]E[1{Wk,t(z
′) ≤ wk ≤ Wk,t(z)}]dwk.

We may apply the same argument to the denominator (again assuming that we can exchange the

order of integration and expectation) to arrive at

E[Wk,t | Zt = z]− E[Wk,t | Zt = z′] =

E[Wk,t(z)−Wk,t(z
′)] =

∫
W
E[1{Wk,t(z

′) ≤ wk ≤ Wk,t(z)}].

Taking the ratio then delivers the desired result. �

B.2 Proof of Theorem 8

The proof is the same as the Proof of Theorem 6, except we must now condition on Ft−1 through-

out. �
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C Proofs of Results for Outputs

C.1 Proof of Theorem 10

Then, if the subsequent moments exist, we have that

E[Yj,t+h|(Yk,t = yk),FY
t−1] = E[Yj,t+h(W1:t)|(Yk,t = yk),FY

t−1], Assumption 5

= E[E[Yj,t+h(W1:t+h)|(Yk,t = yk),W1:t,FY
t−1]|Yk,t = yk,FY

t−1], Adam’s law

= E[E[Yj,t+h(W1:t+h)|W1:t)]|(Yk,t = yk),FY
t−1], Assumption 5

= E[ψj,t+h(W1:t)|(Yk,t = yk),FY
t−1], Assumption 6

the last line holds as the future assignments are not informed by the historical ones. Applying this

result twice gives the first result.

The second result follows by Adam’s law and using the assumed independence of Wk,t from

all the other assignments.
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