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Abstract

We propose solutions to two important problems that have received relatively little
attention in the field of survey weighting: the construction of population targets in the
face of irregularly missing data, and the optimal selection of weighting targets from the
set of possible auxiliary variables. Our solution to the first problem relies on a dynamic
Bayesian population-interpolation model that allows subpopulation estimates in a given
year to be informed by data from other years. To address the second, we formulate the
problem of target selection as one of variable subset selection, for which we propose a
lasso-based solution. We demonstrate the usefulness of these techniques by using them
to generate weights for quota-sampled opinion polls from the early days of survey
research. Given the declining response rates, rising use of non-probability samples,
and growth in potential sources of auxiliary information in modern-day polling, these
methods have wide potential application in contemporary survey research as well.
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1 Introduction

Survey weighting—that is, the post-hoc construction of weights for use in the analysis of

survey data—has become increasingly important in recent years. Weighting samples to

match known population targets can reduce bias caused by unit non-response and also,

if well-chosen, improve the precision of estimates (Bethlehem, 2002; Little and Vartivarian,

2005). As survey response rates have plummeted and polling organizations have increasingly

abandoned probability samples in favor of internet-based opt-in surveys, weighting samples

to account for differential response probabilities has become increasing crucial. Ironically,

the challenges of modern survey research mirror those posed by early public opinion polls of

the 1930s and 1940s, which relied on non-probability quota sampling. Constructing survey

weights has been a core component of recent work by Berinsky, Schickler, and their colleagues

to improve access to and analysis of these early polls (Berinsky, 2006; Berinsky et al., 2011).

Finally, weighting is also central to recent advances in small-area estimation of public opinion,

such as multilevel regression and poststratification (MRP; see Park, Gelman and Bafumi,

2004).

Much of the recent progress in the methodology survey weighting has come under the

rubric of calibration estimation (Deville and Särndal, 1992; Särndal, 2007). Calibration esti-

mation defines weight construction as a problem of finding the set of weights that deviate as

little as possible from prior sampling weights while matching specified moments of the sam-

ple and population distributions (cf. Hainmueller, 2012, on weighting for causal inference).

Calibration subsumes such well-known weighting techniques as raking and poststratification

under a common framework, with different methods corresponding to different choices of

target moments (joint or marginal) and distance metric.

Two problems in survey weighting, however, have received relatively little attention. The

first problem concerns the accuracy and completeness of the population targets themselves.

Data on the population distribution of auxiliary variables must often be compiled from

multiple sources, which may contain modest inconsistencies due to sampling or measurement
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error.1 Even more commonly, population data are available only for particular points in time

(e.g, census years), requiring either an assumption of time-invariant population distributions

or the estimation of population proportions in years with no data. Interpolation between

years with data is relatively straightforward when the structure of population data does not

vary across time, but it becomes much more complex when different data are available at

different points in time. These difficulties have typically led researchers to either ignore

population dynamics or use only target data that are available in the same form across time.

The second problem we address in this paper is the selection of population moments

to use as targets for the weights. If a smoothing method such as in MRP is used to esti-

mate opinion, the estimates can be weighted to exactly match the multivariate population

distribution. But raw survey samples themselves are typically too sparse to weight them

to match the full joint population distribution. Due to sparseness in the survey data, it

is often impossible to construct weights that match the joint population distribution of all

available auxiliary variables. Even if it is possible, matching the full joint distribution may

not be advisable given the increase in variance that it entails. Thus weighting usually re-

quires the choice of which aspects of the population distribution to match and which not to

match. Notwithstanding some useful guidance available on the subject (e.g., Särndal and

Lundstrom, 2005; Bethlehem, Cobben and Schouten, 2011), the complexity of the decision

problem means that it is typically addressed with simple, ad hoc methods.

This paper proposes solutions to both of these problems. For the construction of popu-

lation targets, we propose a dynamic Bayesian approach in which a multinomial sampling

model is used to estimate the joint population distribution based on partially observed and

possibly inconsistent marginal distributions. The population distribution is allowed to evolve

dynamically over time according to a Dirichlet random walk (Grunwald, Raftery and Gut-

torp, 1993), thus providing interpolated estimates between data points. The problem and

1An auxiliary variable is a variable observed in the sample whose population distribution is known or esti-
mated with greater precision than the sample. Throughout this paper, we assume auxiliary variables to be
categorical.
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solution is similar to those of ecological inference, particularly the dynamic approach of

Quinn (2004).

For the problem of selecting weighting variables, we draw on the analogy of variable

subset selection for regression models. The approach we propose uses a multivariate version

of the lasso (Tibshirani, 1996) to rank-order weighting specifications in terms of their ability

to predict response probabilities and important outcome variables. These techniques allow

us to construct much more information-rich population targets than we could otherwise, and

also to optimize our choice of targets to use in the construction of weights.

The remainder of this paper is organized as follows. The next section examines the

issue of population interpolation in more detail, illustrating the problem with the example of

phone ownership by race and region between 1930 and 1960. It then derives and explains the

interpolation model we propose as a solution. The subsequent section addresses the problem

of target selection and our lasso-based approach. The penultimate section applies these

two methods of population interpolation and target selection to the problem of constructing

survey weights for quota-sampled polls from 1940. The final section concludes.

2 Bayesian Population Interpolation

In this section, we motivate and describe our population interpolation model. We begin with

a motivating example that we will use to illustrate the problem and our proposed solution.

We then briefly discuss related problems and methods before deriving our own model.

2.1 Motivating Example: Phone Ownership by Race and Region

We begin by describing a simplified version of the problem that motivated us to develop our

approach to population interpolation. We were interested in constructing survey weights to

mitigate biases in quota-sampled opinion polls fielded between 1936 and 1952.2 The poll

2The data for these polls were cleaned and standardized under the direction of Adam Berinsky, Eric Schickler,
and Jasjeet Sekhon. This work was funded by two grants from National Science Foundation, Political Science
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samples exhibit class, racial, and regional discrepancies from the population. Higher-SES

respondents are overrepresented in the sample, as are whites and non-Southerners. In fact,

most polls entirely exclude Southern blacks (then disenfranchised). Because Southern blacks

are not part of the sampling frame, we must exclude them from the target population, which

we redefine to be all Americans other than Southern blacks.

Consider a quota-sampled poll fielded in 1940. From the 1940 U.S. Census, we know the

joint distribution of Region (South vs. North) and Race (black vs. white), but these variables’

joint distribution with Phone Ownership (phone vs. no phone) is not available until the 1960

Census, when overall phone ownership was much more common. Using AT&T corporate

records, however, we can determine the proportion of phone owners at the regional level in

1940. Table 1 represents the observed and unobserved aspects of the joint distribution of

Region, Race, and Phone Ownership as a three-dimensional array.

South North
Phone No Phone Phone No Phone

Black π(111) π(112) p(11.) π(211) π(212) p(21.)
White π(121) π(122) p(12.) π(221) π(222) p(22.)

p(1.1) p(1.2) p(2.1) p(2.2)

Table 1: Three-dimensional array of the population distribution of Phone Ownership by
Race by Region. Unobserved cell proportions are represented by π and observed marginal
proportions by p. Gray cells (Southern blacks) are not part of the target population.

If the target population were all Americans, we could use raking to produce weights

that match the distribution of Region × Race as well as of Region × Phone Ownership.

These weights would accurately incorporate all known information about the population.3

Because the target population excludes Southern blacks, however, this approach would only

be valid if Phone Ownership and Race were uncorrelated in the South, in which case the

Program: SES-0550431 (Berinsky and Schickler, “Collaborative Research: The American Mass Public in the
1930s and 1940s,” 2006–2010) and SES-1155143 (Berinsky, Schickler, and Sekhon, “Collaborative Research:
The American Mass Public in the Early Cold War Years,” 2012–2014). For further details on the project
and the data, see Berinsky (2006) and Berinsky et al. (2011).

3Although this is rarely noted in the weighting literature, the loss function that raking implicitly minimizes
is the Kullback-Leibler cross-entropy, making raking weights optimal in an information-theoretic sense
(Wittenberg, 2009).
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required interior cells could be obtained by the equations π(121) = p(12.)× p(1.1) and π(122) =

p(12.)× p(1.2). Unfortunately, the 1960 Census, not to mention historical intuition, indicates

that Southern blacks were much less likely than Southern whites to own phones. We are

seemingly stuck with two bad choices: either make an independence assumption between

Phone Ownership and Race that we know to be very wrong, or do nothing to mitigate the

biases caused by the upper-class bias of the poll sample.

An alternative is to find a way to represent all the information we know about the

population while making the weakest assumptions we can. In the broadest sense, we want

to allow the information we know from the 1960 Census—that whites are overrepresented

among phone owners and blacks underrepresented—to inform our estimates of race-specific

phone ownership rates in 1940. Moreover, we would like to make such estimates for all other

years in the 1930–60 period, even years where we observe no data at all.

2.2 Related Problems and Methods

Since the problem described in Section 2.1 is similar to issues in demography and ecological

inference, we briefly review related work in these fields before describing our own approach.

Demographers have long grappled with how best to estimate population totals and com-

position from census and other data. Particularly relevant for our purposes are interpolation

methods for estimating subnational population counts between censuses (Swanson and Tay-

man, 2012). Classical methods in this area were typically deterministic, but most recent

developments in demographic interpolation and forecasting have used a Bayesian approach

(e.g., Raftery et al., 2012; Bryant and Graham, 2013; Wheldon et al., 2013). The models in

these works are typically quite complex and incorporate demographic accounting identities,

fertility information, and other application-specific knowledge into the model itself. But the

models’ basic structure typically involves a sampling model for the data, a transition model

for the temporal evolution of the population counts or proportions, and a set of equations

specifying the logical relationships among demographic quantities.
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Another natural reference point for our work, this one closer to political science, is the

problem of ecological inference—that is, inference about individuals from aggregate data

(Freedman, 2001). Many ecological inference problems, such as the example of a 2× 2 table

of voter registration by race discussed by King, Rosen and Tanner (2004) and many others,

have a very similar if not identical structure to the problem of estimating interior cells from

marginal totals. As Wakefield (2004) notes, such inferences are unreliable in the absence of

supplementary data or prior information, and scholars in this field too have found Bayesian

models an effective way to incorporating such information.

Many ecological inference models bring in such supplementary information via a hierar-

chical model that borrows strength from observably similar cross-sectional units (e.g., King,

1997). As an alternative, Quinn (2004) proposes to borrow strength across time instead.

He argues that temporal dependence in the interior cell proportions is not a “statistical nui-

sance” but rather “an important piece of background knowledge” (Quinn, 2004, 207). Quinn

incorporates this information via a local-level dynamic linear model (DLM) for the logits of

the cell proportions, which shrinks the cell estimates towards the estimates from adjacent

periods.4 He applies this to a dynamic version of the canonical ecological inference problem

of estimating voter registration by race.

Quinn (2004) provides a very useful template for our own work, but it is worth noting

the differences in the problems we respectively address. First, in Quinn’s application the

data are observed in the same form in every time period. By contrast, as illustrated by

our motivating example, we focus on situations in which the available information differs

by period and many periods have multiple data sources or lack data entirely. Relatedly,

in some years we know certain variables’ joint distribution, whereas only data on marginal

proportions are available in Quinn (2004). Finally, our problem is higher-dimensional than

the 2 × 2 tables typical of ecological inference, involving as many as 9 categorical variables

and 37,000 cells in each of 30 years.

4Transforming the proportions to the logit scale allows the use of Gaussian DLMs that would otherwise
violate the unit-interval support of the proportions (Cargnoni, Muller and West, 1997).
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2.3 A Bayesian Interpolation Model

In this section, we derive a Bayesian model that generates year-specific subpopulation esti-

mates informed by all the auxiliary data we have at our disposal. We begin with notation.

Let v ∈ {1, . . . , V } index auxiliary variables, each of which is assumed to be categorical

with Lv levels indexed by l. Let c ∈ {1, . . . , C} index the subpopulation cells defined by the

auxiliary variables, where C =
∏V

v Lv if the variables are non-nested.5 The estimands of

interest are the cell population proportions πt = (πt1, · · · πtc, · · · , πtC)′ in each time period

t ∈ {1, . . . , T} for which survey weights are required.

In each period t, population data are available on the joint distribution of Mt subsets

of auxiliary variables, where Mt = 0 if no data are available. Each variable subset m ∈

{1, . . . ,Mt} contains Vtm ≤ V variables, whose levels define Gtm =
∏Vtm

w Lw groups, each

composed of Htmg ≥ 1 cells. The population data for each variable set m in period t consist

of the Gtm-simplex of proportions ptm = (ptm1, · · · ptmg, · · · , ptmGtm)′, which may contain

measurement and/or sampling error (cf. Deville, 2000; West and Little, 2013). Each group

proportion ptmg is thus considered a noisy estimate of group g’s true population proportion

φtmg, which is the sum of the proportions πtc of the cells that compose group g.

For further intuition, consider the example described in Section 2.1. This example in-

volves V = 3 auxiliary variables (Region, Race, and Phone Ownership), each with Lv = 2

levels. Of interest are the population proportions πtc of C = 2 × 2 × 2 = 8 cells in each

of T = 31 years (1930–60). In 1940 (t = 11), data on the joint distribution of M11 = 2

variable subsets are available, {Region, Race} and {Region, Phone Ownership}, each with

V11,m = 2, H11,mg = 2, and G11,m = 4. We thus observe M11 = 2 vectors of group proportions

p11,m, which are estimates of φtm and which correspond to the marginal proportions in Table

1 (though with slightly different notation). In 1960 (t = 31), only M31 = 1 variable subset is

available: {Region, Race, Phone Ownership}. For the sake of this example, all other years

5An example of nested variables would be State and Region. We use the term cells to refer to the subpop-
ulations whose proportions are of ultimate interest, and we use groups to refer to aggregations of one or
more cells. Only data on group population proportions are observed.
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lack data, so Mt = 0 ∀t /∈ {11, 31}.

Returning to the model exposition, recall that our goal is to use the information contained

in the observed group proportions ptm to make inferences about the true cell proportions

πtc. The Bayesian approach we pursue has two primary components: an observation model

linking the parameters πtc and φtm to the data ptm, and a transition model specifying how

the πtc evolve over time. The addition of prior distributions over the parameters yields a

complete Bayesian model.

As noted above, the observed group proportions ptm are likely to deviate from the true

proportions φtm as a result of measurement and sampling error.6 Moreover, it is possible

for the observed proportions to contain redundant information, which may not be perfectly

consistent if they come from different data sources. We represent the stochastic relationship

between the observed and latent proportions using a multinomial observation model, which

requires that ptm be converted to counts. We do this by multiplying ptm by the “sample

size” nsamp, leading to

nsampptm ∼ Multinomial(φtm, nsamp). (1)

The expected value of ptmg is φtmg, with the sample size nsamp (specified by the analyst)

determining the precision of the sampling distribution.

Recall from above that each group proportion φtmg is the sum of the proportions of the

Htmg cells that compose it. Let Atm be an Gtm×C indicator matrix of zeros and ones, where

a 1 in row g and column c indicates that group g contains cell c. The relationship between

φtm and πt is compactly described with the equation

φtm = Atmπt (2)

because pre-multiplying πt by Atm sums the cells within each group. For instance, in our

6For instance, in our running example, the data on Region and Race are from 1% samples from the complete
census and thus contain sampling error. Note also that information on Region appears twice, once from the
census samples and AT&T records, and that these different data sources need not necessarily be perfectly
consistent.
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running example, if the proportions πt are ordered lexicographically,7 then the indicator

matrix for Region × Race is

Atm =



1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0

0 0 0 0 1 1 0 0

0 0 0 0 0 0 1 1


(3)

and Atmπt = (πt(111) + πt(112), πt(121) + πt(122), πt(211) + πt(212), πt(221) + πt(222))
′. Atmπt is

thus essentially a vector of group-specific intercepts.

Substituting (2) into (1) leads to the following observation model:

nsampptm ∼ Multinomial(Atmπt, nsamp). (4)

The model defined by (4) does not distinguish among cells in the same group, so without

further information the posterior distributions of their distributions will be equal. Thus,

given uninformative priors, a single time period, and one set of auxiliary variables, the

posterior mean for each element of πt will be the same as if we had weighted πt with

poststratification weights derived from ptm.8 The only difference would be the uncertainty

around the estimates, which is determined by nsamp.

One of the advantages of a Bayesian approach, however, is that it makes it easy to

integrate multiple sources of information. One potential source of additional information

is the availability of population data on multiple sets of auxiliary variables in the same

time period. If data on multiple variables are available, Mt > 1 observation models can

be specified, and as with raking on multiple sets of marginal distributions, the posterior

7That is, π(111), π(112), . . . , π(221), π(222), where the parenthetical subscripts correspond to the notation
used in Table 1.

8The poststratification weight of each cell c in group g would be ptmg/Htmg. In general, poststratification
weights are equal within groups as long as the pre-adjustment “reference weights” are equal within groups,
which is the case here.
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distribution of πt will be informed by all of the data. Note that because the observation

model allows for stochastic discrepancies between ptm and φtm, different data sources need

not be perfectly consistent with one another (e.g., if they were derived from separate samples

from the same population).

A second potential source of information regarding πt is data from time periods other

than t. If cell proportions can be regarded as constant over time, the time index can be

dropped and information from different periods incorporated in the same manner as data on

different variables in the same period. A more realistic approach, however, is to specify a

dynamic model for the evolution of πt over time. Since population proportions lack a long-

term mean or trend, the most plausible dynamic model in this context is a simple local-level

DLM, where the value in each period serves as the prior expected value for the subsequent

period. The conventional Gaussian DLM is inappropriate in this case, however, because

it does not respect the constraints on the support of the proportion vector πt. Cargnoni,

Muller and West (1997) address this problem by applying a logistic or similar transformation

to the proportions so that the support of the transformed values is unbounded. We instead

take an approach similar to Grunwald, Raftery and Guttorp (1993) and model the evolution

of the proportions directly, using a Dirichlet distribution.

The Dirichlet would typically be parameterized in terms of a C-vectorαt of “prior counts”

for the C cells. In this application, however, it is convenient instead to writeαt as the product

of the prior expected values (πt−1) and the “prior sample size” ntransition =
∑C

c αtc:

πt ∼ Dirichlet(πt−1ntransition). (5)

As above, the prior sample size ntransition is set by the analyst and determines the innovation

precision. In periods with no data, πt will be interpolated with values informed directly

by the immediately adjacent periods (Quinn, 2004, 210) and, indirectly, by all previous and
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Year Available Data

1930
Race × Region

Phone Ownership

1935 Phone Ownership

1937 Phone Ownership × Region

1940
Race × Region

Phone Ownership × Region

1945 Phone Ownership × Region

1950 Race × Region

1960 Race × Region × Phone Ownership

Table 2: Population Data for Illustrative Example

subsequent estimates. We also specify the following prior for the first period:

π1 ∼ Dirichlet(π0n0). (6)

The values for π0 may be selected by raking or postratifying a C-vector of 1’s to match

a subset of available population targets. To facilitate estimation of the model, it may be

advisable to choose a value of n0 that implies a diffuse but proper prior for π1.

2.4 Interpolation of Phone Ownership by Race and Region

To illustrate this model, we first apply it to our running example of phone ownership by

race and region between 1930 and 1960. Recall that our dilemma is that we would like

to weight the polls to match the rate of phone ownership in the target population (U.S.

population minus Southern blacks), but to do so we need phone ownership rates by race and

region. Even if the target population included Southern blacks, it would still be better to

incorporate what we know about racial differentials in phone ownership. This is exactly what

our interpolation model enables us to do: incorporate all available information, including

information outside the time period of real interest (1936–52), into our estimates of the

target population.

Table 2 details the data on the U.S. population available in each year. We set ntransition =
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1, 000, 000 and nsamp = 100, 000, 000. The large value of ntransition implies a belief that the

yearly fluctuations in the population proportions are relatively small, and the even larger

value of nsamp implies a belief that measurement error in the targets is smaller than year-to-

year variation. We estimate the model using the Bayesian simulation Stan, as called from R

(Stan Development Team, 2013; R Core Team, 2014).9

Estimating the model with these data generates C = 8 estimated proportions in each

of T = 30 years. Figure 1 plots the implied phone-ownership percentages by race and

region.10 As the figure shows, blacks were substantially less likely than whites to own a

phone, especially in the South. Even though the racial phone-ownership disparities are

only contained in the 1960 data, the model propagates this information backwards in time.

The model estimates imply that in 1940, for example, 8% of blacks in the South owned a

phone, compared to 23% of whites. These figures are consistent with estimates derived from

external data, which suggest that 5–9% of Southern blacks owned phone in 1940. It is worth

emphasizing that without the 1960 data, there would be no information to distinguish blacks

and whites, whose phone-ownership rates would thus be estimated to be equal within region.

From the estimated population proportions π̂tc, we can also generate weighting targets for

the U.S. population minus Southern blacks. Under this definition of the target population,

the estimated 1940 phone-ownership rate in the South is 23%, compared to 19% when

Southern blacks are included. Including the 1960 data thus makes a substantial difference

in the targets as well as in any survey weights calculated from them.

The foregoing example is in several respects typical of the applications for which our

model is intended. First, population data are not available in most years for which weights

are desired. Second, even when population data are available, they differ in the aspects of

the population distribution they measure. Sometimes marginal distributions are available

9Stan is a C++ library that implements the No-U-Turn sampler (Hoffman and Gelman, Forthcoming), a
variant of Hamiltonian Monte Carlo. We computed 1,000 samples from the posterior distribution, discarding
the first 500. We use the mean of the posterior distribution as our point estimator.

10The general decline in phone ownership between 1930 and 1935 is almost certainly a consequence of the
Great Depression.
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Figure 1: Estimated Phone Ownership by Race and Region, 1930–60. The shaded area
denotes the years for which we require population targets. Vertical dotted lines indicate
years for which population data are available.

and sometimes partial joint distributions; only once, in 1960, is the full joint distribution

observed. Actual applications will share the same basic structure, but they are likely to

involve more auxiliary variables and thus many more population moments to potentially

match. It is this problem, that of selecting population targets, that the following section

addresses.

3 Target Selection Using the Lasso

3.1 The Problem of Target Selection

In applications like Section 2.4, with only V = 3 variables and C = 8 cells, it is generally

possible and desirable to poststratify poll samples so as to exactly match the joint population
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distribution of the auxiliary variables.11 Assuming the auxiliary variables are categorical,

the poststratification weight of each sample unit i in cell c for survey s at time t is wi[tc] =

nsπ̂tc/ncs, where ns is the survey sample size and ncs is the number of sample units in

cell c. As C increases, however, it becomes more likely that ncs = 0 for at least one cell,

rendering wi[tc] undefined for that cell. Even if no cell is empty, the weights may become very

large, resulting in unacceptably high-variance estimates. The problem of C > ns is likely to

increase in the future as more sources of auxiliary data become available for weighting (e.g.,

consumer surveys; see West and Little, 2013).

One potential solution to this sparseness problem is to use a hierarchical model to generate

shrinkage estimates for every cell, even empty ones; this is the basic motivation for MRP

(see Gelman and Little, 1997). An alternative approach is to use only a subset of population

moments as targets for the weights. Classical raking weights, for example, match only

the marginal distributions of the auxiliary variables. More generally, under the calibration

framework it is possible to use any set of population moments, joint or marginal, as weighting

targets. The question then becomes how to choose the subset of moments to use as targets.

As is well known, weighting reduces nonresponse bias to the extent that the adjustment

cells defined by values of weights are homogenous with respect to the response probabilities

and with respect to the outcome variable (e.g., Little, 1986). This is because nonresponse bias

is approximately equal to the population covariance between the response probabilities (ρi)

and the outcome variable (yi), divided by the average response probability. As a consequence,

one should select auxiliary variables that predict the probability of response or the outcome

variable of interest, preferably both. Beyond this, much of the specific advice on choosing

auxiliary variables is essentially heuristic. Bethlehem, Cobben and Schouten (2011, chapter

9), for instance, suggests pre-selecting certain auxiliary variables based on substantive and

theoretical knowledge, then selecting the rest based on their relationships with nonresponse

and the main survey variables.

11The exception would be if some population cells are excluded from the sample by design, which of course
is the case with the polls of interest in Section 2.4.
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More formal selection criteria have also been proposed (for a review of indicators of non-

response bias, see Wagner, 2012). Some, such as Särndal and Lundstrom (2008), recommend

R2-like statistics that capture variability in response probabilities. The advantage of focusing

only on response probabilities is that the choice of weights does not depend on the outcome

of interest, of which there may be many in a given poll. The downside is that weights in-

crease the variance of outcome estimates unless they predict the outcome well. This has lead

other works to suggest indicators that take into account the outcome variable as well as the

response probabilities (e.g., Särndal and Lundstrom, 2005, 121–2).12

Whether derived from response probabilities only or from the outcome variable as well,

the statistics referenced above provide an indicator with which to rank different sets of aux-

iliary variables by their estimated reduction in nonresponse bias. This requires calculating

the nonresponse statistic for every possible variable subset, which quickly becomes computa-

tionally burdensome, especially when considering interactions (that is, the joint distribution

of two or more auxiliary variables).13

3.2 Target Selection as Variable Selection

We build on this growing literature but take a different approach that conceptualizes the

problem as equivalent to that of variable subset selection in model specification. As Särndal

and Lundstrom (2005, chapter 10) observe, weights reduce nonresponse bias to the extent

that the response influence ωi = 1/ρi or the study variable yi are well predicted by a linear

combination of the auxiliary variables. Thus choosing the optimal set of auxiliary variables

reduces to choosing the regression specification that best predicts ωi and yi, subject to any

constraints on the resulting weights.

The statistical learning literature refers to this problem as variable subset selection. In

theory, the solution is to compare all possible variable subsets on some measure of fit and

12See also Wagner (2010) and Andridge and Little (2011), though neither of these works uses its proposed
nonresponse indicator to select auxiliary variables.

13For this reason, Särndal and Lundstrom’s (2008) proposed stepwise selection procedure for the “best
possible” auxiliary vector considers only main effects.
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select the best subset. Such comprehensive comparisons become computationally infeasible,

however, once the number of variables exceeds 30 or 40. Approximate stepwise shortcuts do

exist, but they share with best-subset selection an undesirably high level of variance (Hastie,

Tibshirani and Friedman, 2009, 57–61).

As its name suggests, the lasso (“least absolute shrinkage and selection operator”) is

a shrinkage estimator that also acts as a variable selector (Tibshirani, 1996). The lasso

regression estimator can be written as

β̂lasso = argmin

{
N∑
i=1

(
yi − β0 −

J∑
j=1

βjxij

)2

+ λ
J∑

j=1

|βj|

}
, (7)

where λ is a tuning paramater regulating how much the coefficients are shrunk away from the

least-squares estimates and towards zero. In other words, λ determines the simplicity of the

model specification. Like ridge regression and other shrinkage estimators, the lasso coefficient

estimates are lower-variance and less prone to overfitting than least squares. Unlike ridge

regression, the lasso’s L1 penalty
∑J

j=1 |βj| causes some coefficients to be shrunk all the way

to zero—that is, to be dropped from the regression specification (Hastie, Tibshirani and

Friedman, 2009, 68–9).

The lasso thus performs a function similar to best-subset and stepwise selection but is

more computationally efficient than the former and less variable than the latter. In addition,

like least-squares regression, the lasso can be generalized to multivariate yi, in which case the

coefficient penalties are grouped across dependent variables. The variable-specific penalties

can also be modified so as to require the inclusion of certain variables in every variable

subset.

3.3 A Procedure for Lasso-Based Target Selection

Our goal is to generate weights that most effectively reduce the correlation between the

response probabilities and relevant outcome variables, while also satisfying any user-defined
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constraints on the weights or the auxiliary variables. For example, users may want to place

bounds on the weights, to require that they match certain population targets, or use a

consistent set of weights across multiple surveys. The following procedure is designed to

achieve this goal:

1. Construct a training dataset for use in selecting auxiliary variables. This dataset may

be the same poll for which weights are desired or a separate dataset with the same

variables.

2. Identify the pool of potential auxiliary variables xi as well as the outcome variables of

interest yi.

3. Estimate the response influence ωi of each unit in the training dataset with its weight

ω̂i, calculated using the joint or marginal population distributions of the auxiliary

variables as targets and ignoring empty cells. If the ω̂i are highly skewed, it may be

desirable to apply a logarithmic or other transformation.

4. For each of a range of λ values, apply the lasso using ω̂i and yi as multivariate re-

sponses and xi as predictors. Set to zero the penalty for any coefficient that, based on

theoretical or substantive knowledge, must be included in the auxiliary vector. Save

the set of non-zero coefficients.

5. Using the actual poll data, start with the largest value of λ (i.e., the simplest model)

and calculate calibration weights with the corresponding lasso-selected variable subset

as moment constraints.14 Continue likewise for successively smaller values of λ until it

proves impossible to construct weights (e.g., due to empty cells in the sample).

6. Select the most “complex” set of weights that satisfy desired restrictions (e.g., bounds).

This procedure should result in the selection of weights that predict yi and ωi about

as well as possible. It is important that the variables in yi be chosen with care and be

14The two primary choices of calibration method are multiplicative weighting (i.e., raking) and linear weight-
ing; see Kalton and Flores-Cervantes (2003) for a comparison.
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limited in number. If they are too numerous, the lasso will give prediction of ω̂i low priority

in the selection of variable subsets. This is problematic insofar as analytic interest lies in

outcome variables not in yi, for which nonresponse bias may be reduced much less than for

yi. Indeed, if many outcome variables are of interest, it may be desirable to either reduce

the dimensionality of yi with factor analysis or another method, or else to predict only ω̂i,

along the lines suggested by Särndal and Lundstrom (2008).

4 Application to Quota-Sampled Polls

This section applies the two techniques introduced in this paper—Bayesian population in-

terpolation and lasso-based target selection—to the problem of constructing weights for a

quota-sampled opinion poll. We begin by using the model in Section 2.3 to estimate the

joint population distribution of seven auxiliary variables in each year between 1930 and

1960. Next, we use the multivariate lasso to select population targets for their predictive-

ness of the response probabilities, voter turnout, and presidential partisanship. Finally, on

the basis of the targets selected by the lasso as well as substantive knowledge, we calcu-

late weights for two quota-sampled polls fielded in 1940 and evaluate the weights on several

external metrics.

In this example, we use the following seven auxiliary variables, all binary unless otherwise

indicated: Black, Farm, Female, Phone Ownership, Professional, Region (Midwest, North-

east, South, and West), and Urban.15. Table 3 lists the population data available in each

year. Note that in no year is the full joint distribution available. Also, as in the illustrative

example from Section 2.1, we exclude Southern blacks from our target population.

To create as large a training dataset as possible, we combine together several hundred

polls fielded in the 1936–52 period, resulting in a combined dataset with over 625,000 valid

15In addition to these seven auxiliary variables, three more are available: Age (three categories), Education
(four categories) and State (48 categories). Cross-classifying on the original seven variables plus Age,
Education, and State results in over 37,000 cells per year. Our example uses only seven auxiliary variables
so as to make the interpolation model less computationally demanding.
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Year Available Data

1930 Black × Farm × Female × Professional × Region × Urban

1937 Phone Ownership × Region

1940
Black × Farm × Female × Professional × Region × Urban

Phone Ownership × Region

1945 Phone Ownership × Region

1950 Black × Farm × Female × Professional × Region

1960 Black × Farm × Female × Phone Ownership × Professional × Region

Table 3: Population Data for Quota-Sampled Polls

respondents. One of the few political variables common to all the component polls is ret-

rospective presidential vote, which we recode to three dummy variables: Voted Democratic,

Voted Republican, and Did Not Vote.16 Together, these variables provide a good proxy for

respondents’ political engagement and orientation. In addition, we poststratify every re-

spondent using the auxiliary variable set defined above, treating the resulting weights ω̂i as

estimates respondents’ response influences.17 The three vote variables and the logarithm of

the poststratification weights form the multivariate response surface for the lasso.18

We convert the seven auxiliary variables to nine non-collinear dummy variables.19 We

include all nine in the lasso variable set along with their (non-collinear) two-way, three-

way, and four-way interactions, for a total of 182 potential variables. Based on substantive

knowledge of the sampling scheme (for details, see Berinsky, 2006), we require that any

variable subset selected include the main effects of all the auxiliary variables as well as

an indicator for Southern blacks. We accomplish this by multiplying the corresponding

coefficients in the penalty λ
∑

j |βj| by 0.20

16A small residual category, those who voted for minor-party candidates, was excluded. As in nearly all
other surveys, voting was substantially over-reported in our data.

17We poststratified the data separately by year and normalized the weights to have a mean of 1 in each year.
We ignored population cells that did not appear in the sample.

18We take the natural logarithm of the weights to make their distribution more symmetric. In addition,
this has the additional benefit of matching the log-linear functional form of the model underlying raking
weights.

19Region was decomposed into the indicators Northeast, South, and West, with Midwest as the excluded
category.

20We also require the inclusion of fixed effects for presidential election cycle.
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We specify a grid of 50 values for the shrinkage parameter λ ranging from 10−4 to 10−1,

equally spaced on the log10 scale, and select a variable subset for each one.21 The simplest

(most regularized) variable subset selected by the lasso includes only the required variables.

The number of selected variables increases log-linearly as λ decreases, reaching a maximum

value of almost 150 variables at λ = 10−4.

Based on this ranking of variable subsets, we generate weights for two Gallup polls

respectively fielded in February and October 1940.22 We choose the first because it asked

respondents whether they own a car, providing a useful indicator of the class bias in the

sample. The second poll is the last one Gallup conducted before the 1940 presidential

election, enabling us to compare election predictions under various weighting schemes to

the actual result. Each of these poll samples contained close to 3,000 respondents. Neither

includes Southern blacks, so we again drop them from the target population.

We attempted to generate raking weights using each lasso variable subset as a set of

moment targets.23 We started with the simplest subset and tried each successive one until

weighting proved impossible. Weighting for the February poll failed on the eighth variable

subset, and the October poll failed on the seventh.24 Under the most complex weighting

specifications, the largest weights were 4 times larger than the average weight, somewhat

greater than is considered ideal (e.g., Deville, Särndal and Sautory, 1993, 1018). The results

reported below varied little across lasso-selected weighting specifications, suggesting that

extreme weights did not cause much of a problem.

In the February 1940 poll, weighting is quite effective at reducing class bias, at least

for the top two-thirds of the SES spectrum, which drives the variation in car ownership.

Based on a 1948 probability-sampled consumer survey and yearly numbers on automobile

21To implement the lasso itself, we used the function glmnet (Friedman, Hastie and Tibshirani, 2010) in the
R computing environment (R Core Team, 2014).

22The polls were AIPO #183 (February 2–7, 1940) and AIPO #219 (October 26–31, 1940).
23We used the R function rake from the survey package (Lumley, 2012).
24The February poll failed because the eighth variable subset included Farm × Professional , but this cell

was empty in the poll sample. The October poll similarly failed due to an empty Black × Phone ×Urban
cell.
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registrations and population (from 1930–50), we calculate a rough population target of 49–

52% car ownership in 1940.25 The unweighted percentage of car owners in the Gallup poll

is much higher at 60%, with a standard error of 1%. But weighting the poll to match the

most complex (feasible) set of targets yields an estimate of 51%, right in the range of our

out-of-sample estimates. The inclusion of Phone Ownership as a weighting variable—which

was made possible by the interpolation method described in Section 2—itself accounts for

about half of the bias reduction.26

The October poll, fielded immediately before the 1940 presidential election, contains a

question on presidential vote preference. Given its high correlation with the retrospective

vote variable used to select targets, we should expect weights to substantially improve esti-

mates of prospective presidential vote. The results are consistent with this expectation. In

the unweighted data, 48% of respondents who expressed a preference said they would vote

for the Democratic Franklin Roosevelt—almost certainly an underestimate of the population

proportion, given the sample’s overrepresentation of Republican-leaning higher-SES respon-

dents. Under any of the six lasso-selected weight sets, the estimate rises to 54%, within a

percentage point of FDR’s ultimate share of 54.7%.27

In summary, the combination of model-based population interpolation and lasso-based

target selection produces weights that seem to perform well. Given that the lasso-selected

weight sets generate estimates very similar to those of the baseline set derived from substan-

tive knowledge, the target-selection procedure appears to be less important in this application

than population interpolation, which permits the use of Phone Ownership as an auxiliary

variable. The lasso may be less useful in this instance because, first, our substantive knowl-

edge of the determinants of nonresponse is usually rich, and second, empty cells in the sample

25Part of the uncertainty stems from having to extrapolate backwards from 1948, and part stems from the
removal of Southern blacks from the target population.

26The car-ownership estimate using weights derived from all marginals except Phone Ownership is 55%.
27The weighted estimates of FDR’s share are higher in all regions, especially outside the South, where the

base percentage is higher and the class bias in presidential partisanship less pronounced. Note that the
exclusion of Southern blacks from the target population does little to bias the estimates because Southern
blacks were excluded from the voting population as well.
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prevented the calculation of weights based on more complex targets. In the future iterations,

it might be beneficial to modify target selection so as to avoid such empty cells.

5 Conclusion

This paper has introduced two advances in survey weighting methodology: a Bayesian ap-

proach to population interpolation and a lasso-based approach to auxiliary variable selection.

Though we have only begun to explore these techniques and validate their performance, we

are encouraged by the results of their application to quota-sampled opinion polls. Further,

we believe that these techniques are of potentially wide applicability beyond the domain

for which they were designed. In light of the decline of response rates, the return of non-

probability sampling, and the growth in potential sources of auxiliary information, survey

researchers need new tools to produce quality inferences, and we hope that our work proves

useful in this regard.
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A Stan Code

data {
int<lower=1> T; // number o f time pe r i od s
int<lower=1> N; // number o f c e l l s
int<lower=1> M; // maximum number o f margins
r ea l<lower=1> priorN ;
r ea l<lower=1> sampleN ;
r ea l<lower=1> t rans i tN ;
r e a l Tgaps [T ] ; // pe r i od s between observed data
s implex [N] props0 ; // p r i o r s
int<lower=0> countsT1M1 [ 1 4 4 ] ; // observed counts
matrix<lower =0,upper =1>[144 , N] iotaT1M1 ; // matrix o f 1 s and 0 s
int<lower=0> countsT1M2 [ 2 ] ;
matrix<lower =0,upper=1>[2 , N] iotaT1M2 ;
// e tc . //

}
parameters {

s implex [N] props [T ] ; // per iod−s p e c i f i c c e l l p r o b a b i l i t i e s
}
model {

props [ 1 ] ˜ d i r i c h l e t ( props0 ∗ priorN ) ;
for ( t in 2 :T) {

props [ t ] ˜ d i r i c h l e t ( props [ t − 1 ] ∗ t rans i tN / Tgaps [ t ] ) ;
}
countsT1M1 ˜ mult inomial ( iotaT1M1 ∗ props [ 1 ] ) ;
countsT1M2 ˜ mult inomial ( iotaT1M2 ∗ props [ 1 ] ) ;
// e t c . //

}
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