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I
. Introduction
Statistical forensic techniques used in election analysis, e.g. (Beber  and Scacco 2008; Mebane and Kalinin 2009), accounting, e.g. (Durtschi, Hillison, and Pacini 2004), and in one case on surveys(Schäffer et al. 2005)often work by checking whether the observed distribution of some digit is  too far from an expected form to be likely to have arisen via random statistical variation. Most typically one deals with digits from multi-digit numbers with broad enough distributions on a logarithmic scale to apply prior expectations based on Benford’s Law (Benford 1938). For small data sets, statistical variation can be so large that prior uncertainty about precisely what form of distribution to expect is relatively unimportant.  For large data sets, however, it becomes important to recognize some uncertainty about the expected form, since that uncertainty is not necessarily small compared to random variations. In order then to avoid sacrificing too much statistical power in detecting deviations from expectations, it then becomes advantageous to decompose the expected distributions into orthogonal functions in such a way as to localize the prior uncertainty about expectation in some of the components, allowing clean statistical tests of the others. In this paper, we illustrate that technique via a forensic analysis of public opinion poll results


We analyze the case of the purported pollster, Strategic Vision LLC (SV), which attracted much attention after the blogger Nate Silver suggested(Silver 2009a) that SV reports might not represent polls at all. (The investigation of SV was prompted by prior issues with them (AAPOR 2009a)

 ADDIN EN.CITE <EndNote><Cite><Author>AAPOR</Author><Year>2009</Year><RecNum>5</RecNum><record><rec-number>5</rec-number><ref-type name="Electronic Source">12</ref-type><contributors><authors><author>AAPOR</author></authors></contributors><titles><title>An Evaluation of the Methodology of the 2008 Pre-Election Primary Polls</title></titles><dates><year>2009</year></dates><urls><related-urls><url>http://aapor.org/uploads/AAPOR_Rept_FINAL-Rev-4-13-09.pdf</url></related-urls><pdf-urls><url><style face="underline" font="default" size="100%">http://aapor.org/uploads/AAPOR_Rept_FINAL-Rev-4-13-09.pdf</style></url></pdf-urls></urls></record></Cite></EndNote>(AAPOR 2009b),not by a statistical fishing expedition.) Silver’s principle evidence was that peculiarities in the distribution of trailing digits in the reported answer percents (e.g. “8” in “48% favorable”) in a large collection of SV reports were reminiscent of products of subjective processes, which manifest the common human tendency to favor certain digits (Nickerson 2002). Specifically, Silver found that the reported distribution of trailing digits was much less uniform than would be expected statistically for random sampling of a uniform distribution. This uniform null hypothesis could then be rejected with great confidence. 

Silver’s conclusion was vigorously challenged by defenders of SV on the grounds that the assumption of a uniform trailing digit distribution was unjustified.  In fact, one comparison firm chosen by Silver showed smaller but still statistically significant deviations from trailing-digit uniformity(Silver 2009b). The question then became whether any feature in the distribution of the digits of the SV reports differed significantly from some expectation more robust than simple uniformity.


The central idea used here (first suggested in this particular context by Mark Grebner on Silver’s blog site) is that sharp features in the digit histogram of any ‘true’ population distribution would be smoothed by sampling error in real poll results, and replaced with simpler statistical variations. That is, if somehow an implausible  collection of polls were taken in which the ideal large-sample results were to give 45%, actual finite sample polling results would show a spread of several percent around that.  Differences between the occurrence rates of trailing-digit 4’s, 5’s, and 6’s which might be found in peculiar ideal large-sample results would be greatly reduced in actual polling results. Instead, they will be replaced with differences due to simple random chance in which results are obtained in particular finite-sample polls. 


Even aside from the formal random polling process, realistic features of an actual portfolio of polling questions on populations would make fine-structure in the digit distribution unlikely.  No two questions are identical.  Opinions vary a bit over time. Even if one were to try to pick questions on which some percentage (e.g. of “favorables” for some political figure) were approximately predictable, quite aside from polling statistics there is no plausible way to find a set of questions in which trailing 4’s are much different in likelihood than trailing 5’s. Thus both common sense and formal polling statistics imply that the distribution of trailing digit occurrences will be smooth, even if it is not strictly uniform. 

So long as we can systematically separate the sort of fine-structure which is dominated by random statistics from other non-uniformities which could plausibly come from the distribution of large-sample ideal results, we can apply standard statistical tests to check whether the reported results were generated by actual polling of populations. One can generally do these tests with compelling weak assumptions about how uniform that ideal distribution might be. We shall show that in the case at hand it is even possible to perform these tests without any subjective constraints at all on what the distribution of opinions might have been in those populations, if one makes the assumption that non-stratified polling methods were used. 


In order to separate the types of variation of digit occurrence rates which would not survive the random sampling process from those variations that would, it is natural to use a Fourier representation of the occurrence of the different digital results, i.e. to express the histogram of answer percents in terms of the sine and cosine functions used in a discrete Fourier transform. The reason is that high-frequency sine waves are greatly reduced by a little smoothing, but low-frequency sine waves are not. The variance of the answer percent histogram is then re-expressed as the sum of contributing variances (called the spectrum, S(f)) at a set of discrete frequencies. At high frequencies, representing variations between closely-spaced digits, the random smoothing effectively wipes out any systematic contribution to S(f) from the hypothetical true distribution. We shall show that as a result the high-frequency part of S(f) can be safely compared to statistical expectations. The low-frequency part contains almost all the contribution to the variance for which arguable subjective priors matter, and can be neglected to avoid disputes about priors. A version of such an argument, not entirely dispensing with common-sense limits on the true distribution, was made on Silver’s blog. (Weissman 2009)
Our techniques here differ from those in Silver’s original blog and in the Fourier-based follow-up in the following respects:

1. We use automated scripts to obtain a large amount of data with no subjective choices about which individual polls to include.

2. We keep track of the actual poll sizes and use these numbers in our calculation of the random smoothing.

3.  Using the distribution of the full percentage result than just of the trailing digits lets us rigorously show the applicability of Fourier analysis and allows a more complete picture of anomalies.
4. Using the full percentage results allows proper calculation of the effect of ideal random sampling in converting a hypothetical true distribution to an expected distribution of poll results, rather than relying on error bars that apply only to the middle of the distribution.

5. We explicitly calculate the effect on the statistics of possible small systematic contributions to S(f).

6. We consider the effects of various subtleties such as the effects of selecting the first two answers or the two largest answers or just one of the answers, and correlations between the digits of the two answer percentages drawn from each poll. 
7. We use non-parametric analysis, not relying on any prior assumption about the uniformity or near-uniformity of the digit distribution of the true population percentages. We find a limit (under the assumption of non-stratified sampling) on how much the true distribution could contribute to the observed component of the spectrum by fine-tuning the hypothetical true distribution to give as large a contribution as possible, consistent with the rough overall form of the distribution. 
8. We conduct extensive simulations based on the fine-tuned hypothetical distribution to make sure that further subtleties, e.g. from non-uniform phase angles between the random and systematic Fourier components, are not important.

 After decomposing the variance in the occurrence rates of the percentage trailing digits into Fourier components, we shall present our results in three stages. We first show that Strategic Vision’s statistically improbable deviations from uniformity are not eliminated when one drops those Fourier components most likely to have systematic non-uniformities, in contrast to other pollsters’ results. Secondly, we show that if one focuses on the most convenient Fourier component, Strategic Vision shows improbable anomalies even if one makes an extremely generous allowance for conceivable systematic contributions to the non-uniformity, including some reduction of polling variance via stratified sampling. Although at that point the immediate practical implications with regard to Strategic Vision will be settled, we then, thirdly, go through a somewhat more demanding specialized non-parametric exercise to show that even if one places no common sense limits on the non-uniformity of the ideal large-sample non-uniformity,  the most convenient Fourier component of the Strategic Vision reports remains anomalous for any ideal distribution of roughly the same coarse-grained shape, if one assumes non-stratified sampling.

We shall conclude by briefly discussing the applicability of our techniques to more common related problems, especially election fraud.(Beber  and Scacco 2008; Mebane and Kalinin 2009) We advise the reader mainly interested in such applications to skip most of the detailed technical discussion of how to avoid any assumptions about distributions by using explicit polling statistics, since such explicit random processes are not available for generic problems.
II. Methods
Data Collection



Poll reports were taken from Web archives on about Dec. 1, 2009 using automated scripts. The scripts were adjusted to extract data from reports in somewhat different formats for each of the four pollsters used: Quinnipiac (QPI), Survey USA (SUSA), Pew, and Strategic Vision, LLC (SV). The SV and SUSA scripts were relatively straightforward due to the consistency of their presentation formats. The QPI script required more flexibility. In order to avoid using the same results multiple times QPI's "trend" sections were skipped. For Pew, only top-line results of polls mentioning the key word “election” were used. Pew's results broken-out among subpopulations were skipped since these often involve much smaller polls than do the comparison groups. The ranges of dates used were determined by the ranges for which the scripts could find data in decipherable formats. We hand-checked a sampling of the SV results with the archives on their website on Jan. 22, 2010, finding no disagreements. Initial spot-checks of polls released before 2008 were impeded since links to older ones were no longer posted on the SV site and at some point between Dec. 1, 2009 and Jan. 22, 2010 the status of the older archives on the independent “Wayback” site(Wayback) changed to “We're sorry, access to http://www.strategicvision.biz has been blocked by the site owner via robots.txt.”  However, the data were still available on SV servers, and subsequent spot-checks were successful. (It was later called to our attention by Harry Enten that one Iowa poll had appeared under two different URLs on the SV site, so we removed one copy of it by hand from our files.)

In order to focus on results whose digit distributions would be expected to be approximately uniform, we followed Silver’s procedure of looking at poll results that give large percents, rather than ones that might be expected to cluster tightly near zero. Instead of following Silver’s procedure of subjectively deciding which types of polls should naturally give two big results, we simply excluded all polls except those with exactly three answer choices. Polls with two choices are relatively rare, and less useful since each provides only one independent result. There are some four-choice polls that could easily be included (e.g. presidential polls in which both ‘other’ and undecided’ were options), but we did not look at those, to avoid any subjective choices about which individual polls to include. Occasional polls extracted by script have errors due to formatting mistakes or quirks in the published results, but these were eliminated by automatically screening out any polls for which the sum of the results found by the scripts was not in the 99%-101% range allowed by standard rounding. No further selection was done.  

In order to have a large sample without many results near zero (where random filtering is weak), we use the two larger percent results from each poll. To check that the selection of the two larger percents does not create any artifacts in the part of S(f) of interest, we also look at collections of the first two percents reported, regardless of value. We also checked that correlations between the two percents used from each poll did not lead to the anomalies for our statistics both by simply looking at the two sets separately and by doing an analytical calculation of the expected (very small) effect for the case (SV) where anomalies were found in the combined results, as described in the Technical Appendix.

Mathematical Structure

For each possible answer to each polled question there is some percent, x,
[image: image1.wmf], of the polled populations who would choose that answer. For some portfolio of questions and populations, there is then a true distribution G(x) of those percents. (We express our independent variable in units of percent or, for Fourier spectra, inverse percent.) Each actual reported answer percent, however, is (under the null hypothesis that honest polling was reported) slightly different from the ideal x for that answer because it is obtained by random sampling of some N respondents and because it is (in the cases we examine) always reported as an integer. We call the reported distribution of results g(x), where here x is an integer. Because g(x) is obtained by random sampling, it is not fully predictable from the (unknown) G(x), but for any G(x) we can calculate the expectation <g(x)> (angle brackets here denote expectation values)  and other statistical properties of g(x) if we know the poll sizes, just by using the binomial distribution of answers and then rounding their x’s to the nearest integer. 

Binomial distributions are appropriate because (at least for the problematic pollster, SV) the reported polls were of populations far larger than the poll size.  Of the SV poll populations whose records have not been removed from available archives, the smallest was of likely Republican caucus-goers in Iowa, a group that ended up casting over 100,000 votes. Almost all the reported polls are of groups like “Pennsylvania likely voters”, who number in the millions.

Representing g(x) by its discrete Fourier transform allows one to separate statistical features which are nearly independent of the unknown G(x)  from those which are not. In technical terms, these sinusoidal terms are approximately eigenfunctions of the smoothing operation caused by random sampling. The probability distributions of sinusoidal terms with low eigenvalues are nearly independent of G(x) . The Fourier transform uniquely represents the distribution of results on 100 x’s  (x=0 and x=100 are lumped together) as the sum of 100 terms: 


[image: image2.wmf],  (1)

 where M is just the mean of g. We define 
[image: image3.wmf], with the normalization picked so that 


[image: image4.wmf],  (2)

i.e. the net variance is just the sum of the spectral contributions. Since the discrete Fourier representation consists of sine and cosine functions it assumes periodicity, i.e. that the function takes on the same value at the upper and lower bound, 0 and 100 in this case. Since the distributions we shall examine do in fact go to zero at 0 and 100, they are indeed representable this way without any ambiguity or artifacts. 
A reduced form of g(x), the distribution of trailing digits g’(y), where y= mod10(x), is useful since under realistic versions of the null hypothesis it is expected to be approximately uniform (unlike the full g(x) on [0,100], which is far from uniform) and because the main alternative to the null hypothesis is that human choices tend to favor certain trailing digits. As a starting point, we calculate the properties of g’(y) under the simple assumption (later to be dropped) that it comes from a uniform distribution on the ten digits, with mean M’=10M, with 10M’ independent answer percents. Then Var(g’)=9M’/10, since for each answer the probability of any particular y is 0.1. 

Under this simple assumption, the expected square of each Fourier coefficient taken on the 10-point g’(y) (with form exactly analogous to the 100-point math) has equal value for each of the nine independent components (two each at f=0.1 through 0.4 and one at f=0.5), because for each f except 0.5 the average over the set of y’s  of either cos2(2pfy) or  sin2(2pfy) is 0.5. For f=0.5 the sine term is zero, giving half as much expected spectral power as for the other frequencies. Then for the other f’s,   4.5<S’(f)> = 0.9 M’= 0.2 M’. We define a convenient spectral unit:
[image: image5.wmf], which gives the expected magnitude of S’(f) under these simple assumptions. For f=0.1, 0.2, etc. we have exactly S(f)=S’(f)/100, so we define a convenient 
[image: image6.wmf]to represent the simplest statistical expectation for these values of S(f). (Again, only half as much appears at f=0.5.)
We shall see that, except for Strategic Vision, none of the pollsters show large deviations of S(f) from SU in the high-frequency range. Since SV does show anomalies, we have to then consider various possible origins. 

The principle issue will concern how much of the structure of G(x) survives random sampling to give systematic contributions to S(f). A useful heuristic approximation is to consider S(f) to be a simple sum of this systematic contribution obtained from the transform of <g(x)> and a random term, whose expectation is SU, which arises because the number of polls is itself finite so 
[image: image7.wmf].  (When we get very precise we will consider that the structure of G(x) slightly modifies the expected random contribution also.) In the limit of very large numbers of polls, even a very small systematic contribution will always dominate over the statistical term, so that one must be careful to use techniques which will not mistake that small term for a statistically significant result.


We begin by picking a frequency on which to focus. The obvious choices are the frequencies f = 0.1, 0.2, 0.3, 0.4, and 0.5 for which S(f) is determined solely by the trailing digit distribution. Peculiar rounding algorithms could give anomalies for f=0.5 (period two, even-odd variation), so we will ignore S(0.5). Given the typical poll size and the size of the collections of polls studied, random sampling smoothing should reduce plausible systematic contributions to S(f) from the hypothetical G(x) to levels near or below SU for f > ~0.15. (We need not be more precise here since we will end up not relying on such plausibility arguments.) Thus for an initial look at the digit non-uniformity, we can simply look at the total contribution (which we call VF=S’(0.2)+S’(0.3)+S’(0.4)) to Var(g’) from the frequency window expected to be nearly free of systematic contributions and compare it to the expected 
[image: image8.wmf] per degree of freedom using a six-degree-of-freedom chi-squared test.(Weissman 2009) The six degrees of freedom are the sine and cosine coefficients for each of the three frequencies kept. A chi-squared test is appropriate because each Fourier coefficient is the sum of a large number of random contributions, one from each poll percent.


We then proceed to a more robust analysis in which we allow for very surprisingly large Fourier content in G(x). For the poll sizes and number of polls of interest, this hypothetical effect could make an important contribution to the Fourier spectrum of  <g(x)> even up through f = 0.3, so we will concentrate on f=0.4. We again find a clear division between one pollster who shows an extremely significant Fourier contribution, beyond what could plausibly come from the structure of G(x), and other pollsters who show no significant effects. Since this is the principle practical result, we check that it is not too dependent on the assumption of ideal non-stratified polling.

Non-parametric tests
As a final exercise, we then consider a hypothetical G(x) with maximal mathematically possible Fourier content in S(0.4). We show that no G(x) with a coarse-grained form similar to the SV reports has any appreciable probability of giving poll results with as large an S(0.4) as found in those reports, assuming non-stratified polling. 

The central problem in making the non-parametric test is to determine how much of an anomalously large S(0.40) might come from a pathological G(x). It is trivial to show that the maximum contribution to S(f) at any one frequency from a non-negative function of mean M is just 2M2. (That simply corresponds G(x)=0  except on a set of x’s which are congruent mod1/f.) We need then to determine how much of that 2M2 systematic contribution can survive the smoothing introduced by random polling errors. 

One important complication is that the extent of the random polling smoothing of G(x) to get <g(x)> depends on x, with a width proportional to (x(100-x))1/2. Thus a sinusoidal Fourier component is not quite an eigenfunction of the smoothing operator, since its amplitude near x=50 is reduced more than near x = 0 or 100. One standard way to deal with the non-uniform width problem is via an arcsine transform of the x-axis of a distribution to convert it to a variable on which the smoothing is uniform. (Brown 2008) In this case, however, we are looking for deviations from the null hypothesis specifically due to psychological preferences for certain digits. Any transformation which scrambles the digital form of the reported results would obscure the sorts of deviations we are looking for.  Instead, we make a precise calculation of what systematic poll results would arise from a hypothetical true distribution by using the full binomial distribution of answer percents that ideal random polling would produce for each ‘true’ x, rather than a Gaussian approximation. 

To make a generous estimate of what systematic terms from the true distribution might contribute to S(0.4), we initially considered a hypothetical G(x) which has the highest mathematically possible S(0.4), with counts only at multiples of 5. In principle, if such a distribution consisted entirely of counts at say 5 and 95, it would be weakly filtered by random sampling because the sampling errors are small there. However, no such true distribution could give rise to the reported SV results, which are broadly spread out and mainly concentrated in the 20-70 range. We construct a G(x) with the maximum possible S(0.4) but the same coarse-grained form as the SV distribution simply by grouping the SV results to the nearest multiple of 5, e.g. all results at 43-47 are mapped to a spike at 45, which puts all the counts in-phase for f=0.4 (and also, incidentally,  for f=0.2).

For each such spike, for computational convenience we use a binomial filtering based on a single effective average number of responses Ne for each poll answer contributing to that spike. The effective average was carefully chosen to underestimate the amount of filtering, as described in the technical appendix. The Ne’s used for each spike were all between 1008 and 1200. Thus, we not only pick a highly implausible G(x) but overestimate how much of its spectral power could survive random polling smoothing. (For statistical results less clear than what we shall find, it would be worth using the full distribution of N’s to avoid overestimating the systematic contribution and thus avoid overestimating the p-value.)

We then considered a further refinement. Although any G(x) consisting of spikes at intervals of 5 gives the maximum possible S(0.4) for its own spectrum, it does not follow that it gives the maximum systematic S(0.4) for the post-filtered <g(x)>, since the asymmetry of the binomial distribution can introduce phase shifts, leaving the filtered contributions of the different spikes slightly out-of-phase. Therefore we searched over all phases for the maximum systematic S(0.4) from <g(x)>, allowing the spike centers to move as much as +/- 2.5, which generously allows counts to move away from 50 toward 0 or 100, systematically reducing the effects of filtering. We then used the G(x) consisting of fine-tuned spikes to calculate a maximum filtered systematic contribution to S(0.4). From that we calculated a p-value using a non-central chi-squared distribution.


Two effects can cause the non-central chi-squared distribution to give slightly inaccurate p-values. Most obviously, the random Fourier coefficients are the sums of finite numbers of random variables, one from each poll answer. Although we will be concerned with rather small tails of the distribution, this effect is still small, at least judging by comparisons of 1-dimensional Gaussian distributions with binomials generated from approximately the same numbers as the number of SV answers. More importantly, for narrow distributions of integer results around particular true x’s the covariance matrix of the two Fourier coefficients s1(0.4) and s2(0.4) need not have the same simple symmetrical diagonal form as for g(x) picked from a uniform distribution. We checked this by running time-consuming Monte_Carlo simulations. (These were run before the Iowa duplicate was removed, but its removal had negligible effects on the analytically calculated statistics and thus was presumed to have negligible effect on the simulations.) Since in some cases p was so small that we were unable to directly run enough polling simulations to check the non-central chi-square estimate, we then used those simulations to estimate the means and covariance matrix for s1(0.4) and s2(0.4). Assuming a Gaussian form for their fluctuations then allows rapid simulation of S(0.4) for 107 poll collections, letting us explore farther out into the tail of the distribution. Given that some of these assumptions can become questionable far out in the tails, and that our Gaussian simulations themselves were not quite large enough to catch the smallest p values, our p-values under about 10-7 may not be quite precise. 


All of the calculations reported here were performed in Matlab. All data and Matlab codes are available on request. Initial checks of the Fourier digit statistics (without calculating the exact filter functions for the particular data set or constructing extreme hypothetical true distributions) can be performed quickly using several lines of Basic code, once a histogram of trailing digits is available. (Weissman 2009) 

III. Results
Our scripts turned up substantial numbers of archived polls meeting our criteria from the four different pollsters, as summarized in the Table. Unlike the other pollsters, SV apparently stopped publishing results in September of 2009, when the first reports of possible irregularities surfaced. (They have recently restarted publication, but with one more significant figure and no longer making the results add up to 100.0%.)  

Figure 1 shows the histograms of the two largest results from the four pollsters. Histograms of the first two reported percents look very similar to these, since in most cases the first two are also the largest two. The results from SV stand out as being more ragged than Quinnipiac and SUSA, which have a roughly similar overall distribution and a similar number of polls. Pew shows significant raggedness due to a relatively small number of polls, and also shows a collection of polls with percents near 0 and 100. Pew thus makes a somewhat less appropriate control group, but a good test of whether our techniques are prone to false positives. Figure 2 shows the distributions of trailing digits. SV stands out for the unusually large jumps between adjacent digits. 

Even viewed on a coarse-grained scale the distributions in Figure 1 are not nearly uniform and not especially similar, so there is no specific well-founded particular prior expectation for the low-frequency part of S(f). Thus our analysis will ignore low-frequency anomalies, whose interpretation involves disputes about prior likelihoods. Instead we focus on higher-f spectral components. We may safely compare the high frequency parts of the spectra with those expected on simple statistical grounds, i.e. SU. 

Figure 3 shows the Fourier spectra S(f) of the full results histograms, expressed in units of SU, for each of the pollsters, on a scale in which the high-frequency range is visible and the irrelevant lowest frequencies are off-scale. The huge peak near f=0.1 in the SV’s S(f), giving the largest contribution to the variance in SV’s trailing digit occurrence rates,  may be quite peculiar, given that the diverse portfolio of poll topics should give a roughly uniform distribution of trailing digits. The corresponding peak in Silver’s smaller data set accounted for most of the statistical significance in his uniformity test. Nevertheless, we shall ignore it.

 Figure 3 shows that for f > 0.16 the spectra for the pollsters other than SV are in the neighborhood of this simple statistical expectation. In fact, in that range S(f) < 4.0 SU for all the other pollsters, so that a simple chi-squared significance test would not show any of the S(f)’s to be significantly different from the uniform expectation  at the p= 0.018 level for even a single Fourier component. Even the unusual form of the Pew histogram does not lead to obvious anomalies in this high-f range, although in principle something like it could. In contrast, SV’s spectrum is far larger for many f.

At this point it is worth checking whether the crude test (Weissman 2009) of the filtered variance, VF, which ignores the very large contributions from S(0.1), shows anything peculiar. The results, as shown in the Table, show significant anomalies only for SV. We now check whether those survive more stringent tests.
 The most anomalous feature of the SV spectrum is the peak in S(f) near f=0.4, for which systematic contributions are quite implausible. Just comparing S(0.4) to SU gives the p-values shown in the Table. This peak is not an artifact of the choice of the two larger percents, since it turns out a larger peak is found if one instead chooses the first two percents regardless of size, as described in the Table. Clearly one of these pollsters is not like the others.

Before proceeding further, we consider whether correlations between the two percents used from each poll have any significant effects on SV’s S(0.4). We checked the statistics on the first and second percents reported (not sorted by size) separately, to entirely avoid these inter-answer correlations. These subsets are also anomalous. In particular, the chi-squared p-value for S(0.4) of SV’s second answers alone was 1.1*10-11 despite the smaller number of answers. We initially set aside this value and the one obtained from the first two percents, and focus only on the two largest percents, as initially planned. (We also did an analytical calculation of the effect of correlations on S(0.4) of the combined two largest percents, described in the Technical Appendix.)

At this point we have finished showing that even for the Fourier components least likely to show major systematic non-uniformities in genuine poll results, the SV reports show much larger spectral weight than could plausibly be accounted for by simple statistics. The other pollsters do not. 

The question then becomes whether SV could have made some unusual choice of questions and populations that happened to give an anomalously large systematic S(0.4), qualitatively similar in origin to the variety of non-statistical low-frequency components shown by the different pollsters. An answer based on common-sense is easy to find. Let us stretch credulity to imagine a pathologically large sinusoidal component at f=0.4 in a G(x) of the same coarse-grained shape as the reported g(x). We thus hypothesize a G(x) = g(x)*(1+0.5cos(2pfx)), using the empirical g(x) for the two largest percents. We then use an analytic calculation of filtered distribution left after ideal random sampling to calculate the surviving systematic contribution to S(0.4). Allowing for that systematic contribution raises the p-value from the chi-squared 2.1*10-8 to a non-central chi-squared value of 2.8*10-8.   

Given that SV has consistently refused to release any information on their methods, one cannot rule out a priori that they might have used stratified sampling to reduce the variance introduced by the polling process. In the absence of any information on such a hypothetical procedure, we may nevertheless make a generous heuristic allowance for it. Checking the exit polls from the 2008 presidential election, one finds that strict party identification stratification could reduce polling variance by a factor of 2.0 in that highly partisan race. (The general lore is that the exit results in such a race are more strongly party-linked than in pre-election polls or in many of the other races in the SV portfolio.) Using a Gaussian approximation to crudely estimate the reduction of the filtering by this maximal reduction in polling variance would increase the systematic component from our highly unrealistic G(x) enough to bring the non-central chi-squared p up to ~0.002 for the largest two percents. For the first two percents, the same procedure leaves p < 10-4.

For practical purposes, we are now done. No remotely plausible form of G(x), the portfolio of true population percents,  even with gross non-uniformities, could plausibly give rise to the reported poll results, even if one were also to imagine a highly unrealistic reduction in polling variance via stratification.. Other pollsters show no anomaly in the same statistic. This leaves our third, more specialized exercise, to find out if subjectively even more unreasonable but mathematically possible G(x) could lead to results like those reported by SV via ideal random polling.

Now we shall pursue a calculation which allows the largest mathematically possible contribution to S(0.4), or at least a close approximation, regardless of how unrealistic it might be. The calculated systematic contribution to S(0.4) from the highly artificial fine-tuned starting distribution described in the Methods section is, after filtering by the binomial distributions of random polling, 1.0677*SU. If this artificially large offset is used and the random fluctuations in the Fourier coefficients are assumed to be the same as for a uniform distribution, a non-central chi-squared distribution is appropriate, giving a p-value of 9.4*10-6, substantially increased but still small.  (Following this same procedure of generating hypothetical G(x)’s to calculate maximum systematic terms on the collection of SV’s first two reported percents brings its p up from the chi-squared p=8.6*10-11 to the non-central chi-squared p=1.3*10-6 and for its second reported percents up from 1.1*10-11 to 6.6*10-9.)
In the 510,000 simulations of poll collections starting with the same hypothetical distribution used to calculate the maximum systematic term (but including the duplicate Iowa answers) we observed 4 instances in which S(0.4) was as large as in the data, in statistical agreement with the non-central chi-square expectation of 5.4 such events. To get a little more statistically reliable test of how accurate the non-central chi-squared test is, we checked how often S(0.4) > 14 S​U,  finding 57 such events, somewhat less than the non-central chi-squared calculation prediction of 84. This modest discrepancy suggests that the p of 1.1*10-5 calculated via the non-central chi-squared (including the Iowa duplicate) assuming uniform fluctuations is too high by roughly a factor of 1.5, because the form of the covariance matrix of the two relevant Fourier coefficients deviates from its simple uniform form.  Extracting the averages and covariance matrix for the two f=0.4 coefficients from the last run of 80,000 simulations gave, under the assumption of Gaussian fluctuations in these coefficients, p=6.1*10-6, in good agreement with the simpler extrapolation.  A similar run of 10,000 simulations gave p=5.3*10-6 with the Iowa duplicate removed.
In analyzing the collection of second-reported percents, we rely more heavily on the Gaussian extrapolation since p is very small. Taking parameters from a run of 100,000 simulations, we obtain 10 events with S(0.4)>20SU out of 107 tries. Extrapolating to the observed S(0.4)/SU =25.3113  (which became 25.2597 after removing the Iowa duplicate) for this data set gives roughly p=1.4*10-8,  i.e.  in this case the correction for the form of the covariance matrix happens to be a slight increase in p compared to the non-central chi-squared value.
With the simulations providing some confidence in the non-central chi-squared approximation, we then looked at this S(0.4) statistic for the first and second reported percents separately for the other three pollsters. Only one collection, Pew’s second reported percents, produced a (barely) significant chi-squared result, p=0.047. However, the algorithm for constructing the maximum systematic contribution completely wiped out this effect, leaving non-central chi-squared p=1.0, i.e. the systematic term could exceed the observed result for Pew. 

We have not formally proven that our G(x) gives the maximum possible p-value consistent with the SV results. The reason is that, although we have gone well outside the range of G(x)’s which are otherwise consistent with the SV reports in order to maximize the systematic contribution to S(0.4), some G(x) with a smaller systematic contribution could have slightly larger fluctuations along the phase of the systematic contribution. Such effects are small for the distributions we have studied. On the other hand, even aside from common sense priors, there are two strong reasons to think that the G(x) we used is substantially too generous. First, in order to keep the results in phase at f=0.40, due to the integer-percent digitations limits, the spikes are forced to positions that produce a huge f=0.2 component in the filtered results, with S(0.2) in the simulations roughly 40 times larger than S(0.4). Such a component is not present in the reported results. Second, the optimized ‘jogging’ of the spikes systematically moved the outer ones toward 0 or 100, where the filtering is weaker, so that the absence of reported poll results outside the 7-89 range would itself then be very unlikely for the hypothetical true distribution used.

We have thus finished the third stage of the analysis. No G(x) with the same coarse-grained structure as the reported SV results has a reasonable chance of giving rise via simple random polling to the spectral peak at f=0.4 which appears in their reported results. The other pollsters show no such anomaly.

IV. Discussion
In interpreting the probability that SV’s S(0.4) term could arise from actual polling of any true distribution, we need to remember that this was not the only possible Fourier component to look at a priori, although it was the obvious first choice since f=0.4 is the only multiple of 0.10 both free of any even-odd rounding artifacts and above the range where systematic terms could contribute much in the non-parametric analysis. If, however, a huge peak had shown up elsewhere in the high frequency spectrum, we would have noticed it as well. Since the spectral peaks are essentially three bins wide (empirically, and as required mathematically because the weight of the SV histogram is mostly in the middle third of the range), there are about four independent windows in the range 
[image: image9.wmf] where even for non-parametric analysis the systematic terms are small enough to allow statistical analysis. Thus for the non-parametric analysis the global p would be about four times larger than calculated for the single peak at f=0.4. Taking into account the full set of possible observed anomalies in S(f) thus does little to raise the p-value into a reasonable range. 

On the other hand, we have stumbled on several more extreme anomalies of S(0.4). We looked at only three collections of percents (first two reported, first, and second) other than the one we had chosen to focus on a priori.  These collections were not chosen because of some ex post facto reason to suspect them but simply to be sure that artifacts created by choosing the two biggest percents were not responsible for the anomalies in the S(0.4) statistic. Two of these sets (first two percents and second) were substantially more anomalous than the one we chose initially, and their anomalies remained extremely significant after allowing for systematic contributions. Scanning over the same set of statistics for the other three pollsters, produced only one marginally significant result, which was wiped out by allowing for a systematic contribution. Thus the possibility that the Strategic Vision results were generated by standard polling techniques is essentially ruled out.
The next obvious question is whether SV’s reports were based on real results that were subjectively ‘nudged’ or were simply invented. The techniques used here, focused on the fine-structure in digit occurrence rates, are unsuitable for addressing that question, because they were deliberately chosen to be insensitive to the unknown gross structure of the full-population values for the chosen questions. Nudges of 2.5% or less can turn any percent result into an integral multiple of five, producing extreme fine-structure anomalies. Therefore the question of ‘nudges’ vs. inventions can only be addressed by other forensic techniques, e.g. attempting to locate some of the entities that did the alleged calling or some of the hundreds of thousands of alleged respondents. An entirely different approach, based on peculiarities in the purported responses to an open-answer poll, has been made by Adam Molnar (Molnar 2009). The sorts of qualitative anomalies discussed by Molnar are useful in distinguishing between a subjective thumb on the scale and simple fiction.

Looking ahead to possible similar applications with less extreme data, it would be advisable to constrain G(x) more rigorously, at least by requiring statistical compatibility (at the level of the p-value obtained) between the hypothetical G(x) and the other Fourier components of the observed g(x), as well as nearly matching the width of the distribution g(x). In the present case it is unnecessary to narrow the constraints. Likewise, with less clear statistics it would be worthwhile to lower the calculated p by calculating the exact filtering for each contributing poll size, rather than underestimating the filtering by using our conservative weighted-average size. 

With foresight, the forensic techniques used here could be defeated by extremely inexpensive countermeasures. A recoverable investment of $0.01 would suffice, although a deluxe parallel-processing anti-forensic device would cost $0.02. Nevertheless, our techniques or ones like them may prove useful in dealing with unsophisticated or uncoordinated fabrications of results that have random or pseudo-random components. These could include election results as well as poll results.  

For election results, in which the randomness is only implicit, useful analyses require prior assumptions about digit distributions. The expected Benford-based distributions of second digits or uniform distributions of trailing digits both rely on assumptions about the smoothness and breadth of a hypothetical distribution. (Beber and Scacco 2008; Mebane and Kalinin 2009) Fourier analysis may allow use of more generic assumptions than are currently employed.  Ignoring the lowest frequency (f=0.1) component of the digit histogram spectrum can avoid most potential problems due to deviations from the assumed distributions of sizes of reporting units, etc. without throwing away much statistical power. Almost all of our more tiresome mathematical manipulations here involved using the explicit polling randomness to remove the need for prior assumptions about distributions. Although in the broader class of problems Fourier analysis would not completely remove this need, retaining such assumptions would also free the practitioner from the need for calculations fancier than a simple Fourier transform. When dealing with large generic data sets, however, it is still important to have some explicit assumptions about how large the systematic deviations from ideal distributions at different frequencies might be, since these can exceed the random deviations.
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Technical Appendix

Correlations between the two answers from each poll: 

Since SV uses the unusual convention of always reporting results which sum to 100%, the second answer is determined by the first once the leftover third answer percent is given. A particular combination of two answers, d1 and d2 has a different S(f)  than expected for two numbers randomly picked from a uniform distribution by a factor of (1+ cos(2pf D)), where D d1-d2,  as can easily be checked. Therefore if D is not uniformly distributed, the expected S(f) is modified. Now confining discussion to the trailing digits, sufficient to determine the correlation effect on S(f) for any f  that is a multiple of 0.1, one can show rigorously that this has no effect at all on the expected power at f=0.4 if the first digit d1 is picked from a uniform distribution, regardless of the distribution of third digits, d3. This result follows because 
[image: image10.wmf] (mod10), and 
[image: image11.wmf] regardless of d3.  (The same math works for any f used in the digit transform, except f=0.5.) Although the distributions of the digits used are not quite uniform  (this is, of course, the phenomenon under consideration), the effect remains small.  Using SV’s actual distribution of unused smallest trailing digits, d3, and its actual distribution of digits used (as in Figure 2) for the distribution of d1, the average of (1+ cos(2pf D)) happens to be 0.9924, very slightly reducing the expected S(0.4). Since that would lower the p-value, we ignore this very minor complication.

 Effective average N’s:

For computational ease, we want to initially use a single N-value on each spike of the hypothetical G(x). (Obviously if a similar problem were to come up again one does not need to do this.) Using a simple average of the N’s of the polls contributing to each spike would overestimate the filtering, since more high-f content survives in the average of results smoothed by polling with different N’s than in smoothing all of them by their average N. We could just use the maximum N, but a small sprinkling of polls with N=1450 would lead to a serious underestimate of the effects of filtering of the majority of polls, almost all of which have N=800 or N=1200. Instead we slightly underestimate the amount of smoothing, by using an intermediate averaging algorithm, taking the K’th root of the average of NK. For K=1 that would overestimate the filtering, but in the limit of large K it simply picks the maximum N and thus underestimates the filtering. One needs to keep the second derivative of this filtered magnitude with respect to the poll-size parameter averaged negative in the relevant parameter range to avoid over-filtering. To pick K, we used that the magnitude of the linear filtering multiplier in the Gaussian approximation is exp(-2p2f2x(1-x)/N).  We then require K > 2p2f2x(1-x)/Ne – 1, where Ne is the effective average. K=7 meets this condition for each spike in our SV G(x) for f=0.4. For the most important, less-filtered spikes, away from x=50, the condition is met strongly. Thus in the Gaussian approximation, using this average gives less filtering at f=0.4 than would be found from actually averaging the filter functions for the different N’s. 
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	Pollster
	QPI
	SUSA
	Pew
	SV

	Starting month
	12/1999
	1/2005
	1/2000
	2/2005

	Ending month
	11/2009
	11/2009
	11/2009
	9/2009

	Number of 3-answer questions
	6734
	4032
	1069
	3443

	VF (two largest percents)
	1.01
	0.41
	1.26
	9.48

	2 p (from row above)
	0.42
	0.87
	0.27
	1.9*10-10

	S(0.40)/SU  (two largest percents)
	1.16
	0.24
	1.90
	17.7

	2 p  (from row above)
	0.31
	0.79
	0.15
	2.1*10-8

	S(0.40)/SU  (first two percents)
	1.14
	0.20
	1.07
	23.2

	2 p  (from row above)
	0.32
	0.82
	0.34
	8.6*10-11


Table I.
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Figure 1. Histograms of percents.

[image: image13.png]occurrences

1000

500

1500

1000

500

1000

500

300

200

100

4 sy S

4QPl 5

4SUSA®

4Pew °

trailing digit





Figure 2. Trailing digit histograms.
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Figure 3. Normalized Fourier spectra of the percent histograms, S(f)/SU, with SU defined in the text.
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