<font face="garamond,serif">Hello all,</font><div><font face="garamond,serif"><br></font></div><div><font face="garamond,serif">We hope you can join us this Wednesday, November 28, 2012 for the final Applied Statistics Workshop of the semester. Jens Hainmueller (Associate Professor) and Teppei Yamamoto (Assistant Professor) from the Department of Political Science at MIT will give a presentation entitled &quot;Causal Inference in Conjoint Analysis: Understanding Multi-Dimensional Choices via Stated Preference Experiments&quot;. A light lunch will be served at 12 pm and the talk will begin at 12.15.</font></div>
<div><font face="garamond,serif"><br></font></div><div><font face="garamond,serif">Abstract:</font></div><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-color:rgb(204,204,204);border-left-style:solid;padding-left:1ex">
<font face="garamond,serif">For decades, market researchers have used conjoint analysis to understand how consumers make decisions when faced with multi-dimensional choices. In such analyses, respondents are asked to score or rank a set of alternatives, where each alternative is defined by multiple attributes which are varied randomly or intentionally. Political scientists are frequently interested in parallel questions about decision-making, yet to date conjoint analysis has seen little use within the field. In this manuscript, we demonstrate the potential value of conjoint analysis in political science, using examples about vote choice and immigrant admission to the United States. In doing so, we develop a set of statistical tools for drawing causal conclusions from stated preference data based on the potential outcomes framework of causal inference. We discuss the causal estimands of interest and provide a formal analysis of the assumptions required for identifying those quantities. Prior conjoint analyses have typically used designs which limit the number of unique conjoint profiles. We employ a survey experiment to compare this approach to a fully randomized approach. Both our formal analysis of the causal estimands and our empirical results highlight the potential biases of common approaches to conjoint analysis which restrict the number of profiles.</font></blockquote>
<div><br></div><div><font face="garamond, serif">An up-to-date schedule for the workshop is available at <a href="http://www.iq.harvard.edu/events/node/1208">http://www.iq.harvard.edu/events/node/1208</a>.</font></div><div>
<font face="garamond, serif"><br></font></div><div><font face="garamond, serif">Best,</font></div><div><font face="garamond, serif">Konstantin</font></div><div><br></div><div>-- <br><font face="garamond, serif">Konstantin Kashin<br>
Ph.D. Candidate in Government<br>Harvard University<br><br>Mobile: 978-844-0538<br>E-mail: <a href="mailto:kkashin@fas.harvard.edu" target="_blank">kkashin@fas.harvard.edu</a><br>Site: <a href="http://people.fas.harvard.edu/%7Ekkashin/" target="_blank">http://www.konstantinkashin.com/</a></font><br>
<br>
</div>